Advertisement

Calorimetric Investigation of the Pyridine — Chloroform Complex

  • Gary L. Bertrand
  • Thomas E. Burchfield

Abstract

Heats of solution of small amounts of pyridine have been measured in mixtures of chloroform and carbon tetrachloride at 25°C. This data has been interpreted in terms of a complex between chloroform and pyridine with simultaneous solution for Kf and ΔHf% using both the ideal dilute solution approximation and a second approximation which attempts to account for the effects of nonideality. The “best” values determined with the ideal dilute solution approximation are Kf = 0.28 l/mole, ΔHf° = -3.3 kcal/mole; and Kf = 0.28 l/mole, ΔHf° = -2.8 kcal/mole determined with the second approximation.

Keywords

Carbon Tetrachloride Infinite Dilution Simultaneous Solution Strong Complex Partial Molar Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    L. Lamberts and T. Zeegers-Huyskins, J. Chim. Phys., 60, 435 (1963);Google Scholar
  2. 1. (b)
    L. Lamberts, ibid., 62, 1404 (1965).Google Scholar
  3. 2. (a)
    T. F. Bolles and R. S. Drago, J. Amer. Chem. Soc, 87, 5015 (1965);CrossRefGoogle Scholar
  4. 2. (b)
    T. D. Epley and R. S. Drago, ibid., 89, 5770 (1967);Google Scholar
  5. 2. (c)
    R. S. Drago and T. D. Epley, ibid., 91, 2883 (1969);Google Scholar
  6. 2. (d)
    M. S. Nozari and R. S. Drago, ibid., 94, 6877 (1972);Google Scholar
  7. 2. (e)
    F. L. Slejko, R. S. Drago, and D. G. Brown, ibid., 94, 9210 (1972).Google Scholar
  8. 3. (a)
    E. M. Arnett, T. S. S. R. Murty, P. von R. Schleyer, and L. Joris, ibid., 89, 5955 (1967);Google Scholar
  9. 3. (b)
    E. M. Arnett, L. Joris, E. Mitchell, T. S. S. R. Murty, T. M. Gorrie, and P. von R. Schleyer, ibid., 92, 2365 (1970).Google Scholar
  10. 4. (a)
    W. C. Duer and G. L. Bertrand, ibid., 92, 2587 (1970);Google Scholar
  11. 4. (b)
    G. L. Bertrand, D. E. Oyler, U. G. Eichelbaum, and L. G. Hepler, Thermochim. Acta, 7, 87 (1973).CrossRefGoogle Scholar
  12. 5.
    F. Dolezalek, Z. Phys. Chem., 64, 727 (1908).Google Scholar
  13. 6.
    T. Matsui, L. G. Hepler, and D. V. Fenby, J. Phys. Chem., 77, 2397 (1973).CrossRefGoogle Scholar
  14. 7. (a)
    E. M. Woolley, J. G. Travers, B. P. Erno, and L. G. Hepler, J. Phys. Chem., 75, 3591 (1971);CrossRefGoogle Scholar
  15. 7. (b)
    E. M. Woolley and L. G. Hepler, ibid., 76, 3058 (1972);CrossRefGoogle Scholar
  16. 7. (c)
    N. S. Zaugg, L. E. Trejo, and E. M. Woolley, Thermochim. Acta, 6, 293 (1973).CrossRefGoogle Scholar
  17. 8. (a)
    S. D. Christian, J. Phys. Chem., 70, 3376 (1966);CrossRefGoogle Scholar
  18. 8. (b)
    J. Grundnes and S. D. Christian, Acta Chem. Scand., 23, 3583 (1969);CrossRefGoogle Scholar
  19. 8. (c)
    S. D. Christian and E. E. Tucker, J. Phys. Chem., 74, 214 (1970).CrossRefGoogle Scholar
  20. 9. (a)
    G. L. Bertrand, R. D. Beaty, and H. A. Burns, J. Chem. Eng. Data, 13, 436 (1968);CrossRefGoogle Scholar
  21. 9. (b)
    E. L. Taylor, M. Sc. Thesis, University of Missouri — Rolla, 1969.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Gary L. Bertrand
    • 1
  • Thomas E. Burchfield
    • 1
  1. 1.Department of ChemistryUniversity of Missouri-RollaRollaUSA

Personalised recommendations