The Use of Thermal and Ultrasonic Data to Calculate the Pressure Dependence of the Gruneisen Parameter

  • S. R. Urzendowski
  • A. H. Guenther


A knowledge of the Gruneisen parameter is a prerequisite to any practical or theoretical evaluation of the pressure or temperature dependence of thermodynamic properties in equation of state studies. As demonstrated by Gruneisen (1) and others (2,3,4), the Gruneisen ratio may be determined from mechanical properties (such as the bulk modulus and sound velocities), and from thermal properties such as volume coefficient of expansion and specific heat data.


Bulk Modulus Pressure Dependence Temperature Derivative Pressure Derivative Volume Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Gruneisen, Handbuch der Phys., 10, 1 (1926).Google Scholar
  2. 2.
    S.R. Urzendowski and A.H. Guenther, Thermal Analysis, Vol. 1, p. 493, Edited by R.F. Schwenker, Jr. and P.D. Garn, Academic Press, New York, 1969.CrossRefGoogle Scholar
  3. 3.
    C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., New York, 1968, page 182.Google Scholar
  4. 4.
    R.E. Barker, Jr., J. Appl. Phys., 38, 4234 (1967).CrossRefGoogle Scholar
  5. 5.
    C.A. Swenson, The Physics and Chemistry of High Pressures, Editor, A.R. Ubhelohde, Society of Chemical Industry, London, England, 1963, p. 39.Google Scholar
  6. 6.
    A.H. Guenther, Symposium on Dynamic Behavior of Materials, Special Technical Publication No. 336, Am. Soc. for Testing Materials (1962).Google Scholar
  7. 7.
    J.C. Slater, Introduction to Chemical Physics, McGraw-Hill, New York, 1963.Google Scholar
  8. 8.
    J.R. Asay, S.R. Urzendowski, and A.H. Guenther, Air Force Weapons Laboratory, Tech Rept. No. 67–91, Kirtland Air Force Base, New Mexico, 1968.Google Scholar
  9. 9.
    S.R. Urzendowski and A.H. Guenther, Air Force Weapons Laboratory Tech. Rept. 71–6, Kirtland Air Force Base, New Mexico, 1971.Google Scholar
  10. 10.
    R.N. Thurston, Proceedings of the IEEE 53, 1320 (1950).CrossRefGoogle Scholar
  11. 11.
    D.L. Lamberson, Dissertation, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.Google Scholar
  12. 12.
    O.L. Anderson, J. Phys. Chem. Solids 27, 547 (1966).CrossRefGoogle Scholar
  13. 13.
    F.D. Murnaghan, Proc. Nat’l. Acad. Sci., 30, 244 (1944).CrossRefGoogle Scholar
  14. 14.
    J.S. Dugdale and D.K.C. MacDonald, Phys. Rev., 89, 832 (1953).CrossRefGoogle Scholar
  15. 15.
    S.R. Urzendowski, D.A. Benson and A.H. Guenther, Thermal Analysis, Vol. 3, 365 (1971), Editor H.G Wiedemann, Birkhauser Verlag, Basel und Stuttgart, Davos, Switzerland.Google Scholar
  16. 16.
    J.A. Kok, Physics, 24, 1045 (1958).Google Scholar
  17. 17.
    N.E. Phillips, Phys. Rev., 118, 664 (1960).CrossRefGoogle Scholar
  18. 18.
    B. Wunderlich, Heat Capacities of Linear High Polymers, Office of Naval Research, Tech. Rept. No. 17, Rensselaer Polytechnic Institute, Troy, New York, 1968.Google Scholar
  19. 19.
    W. Reese, J. Appl. Phys., 37, 3959 (1966).CrossRefGoogle Scholar
  20. 20.
    C.L. Choy, G.L. Salinger, Y.C. Chiang, and J.I. Treu, Bull. Am. Phys. Soc., 12, 1063 (1967).Google Scholar
  21. 21.
    F.H. Featherston and J.R. Neighbours, Phys. Rev., 1324 (1963).Google Scholar
  22. 22.
    P.W. Bridgman, Collected Experimental Papers, Vol. VI, Harvard University Press, p. 3846, 1964.Google Scholar
  23. 23.
    M.H. Wagner, W.F. Waldorf, and N.A. Louie, AFSWC-TDR-62–66, Vol. I, Aerojet-General Corp., 1962.Google Scholar
  24. 24.
    G.E. Hauver and A. Melani, Shock Compression of Plexiglas and Polystyrene, BRL Rept. No. 1259, Aberdeen Proving Ground, Maryland, 1964.Google Scholar
  25. 25.
    P.S. Ku, Equation of State of Organic High Polymers, AD678–887, General Electric, Phil., Penn. 1968.Google Scholar
  26. 26.
    C.E. Weir, J. Res. Nat’l. Bur. Std., 53, 245 (1957).CrossRefGoogle Scholar
  27. 27.
    R.S. Spencer and G.D. Gilmore, J. Appl. Phys., 20, 502 (1949).CrossRefGoogle Scholar
  28. 28.
    J. Brandup and E.H. Immergut (Editors), Polymer Handbook, John Wiley and Sons, New York, 1972.Google Scholar
  29. 29.
    B.J. Kohn, Air Force Weapons Laboratory, Tech. Rept. No. 69–38, Kirtland Air Force Base, New Mexico, 1969.Google Scholar
  30. 30.
    R.G. McQueen, S.P. Marsh, S.W. Taylor, J.N. Fritz and N.J. Carter, High Velocity Impact Phenomena, R. Kinslow, Editor, Academic Press, New York, 1970.Google Scholar
  31. 31.
    A.L. Ruoff, Sandia Corp., Tech. Rept., SC-RR-66–676, 1966.Google Scholar
  32. 32.
    D.J. Pastine and D.J. Piacesi, J. Phys. Chem. Solids, 27, 1783, (1966).CrossRefGoogle Scholar
  33. 33.
    S.R. Urzendowski and A.H. Guenther, “The Combination of Thermal and Ultrasonic Data to Calculate Gruneisen Ratios and Various Thermodynamic Functions”, paper presented at International Symposium on Thermal Expansion, Lake of the Ozarks, Mo., Nov. 1972. (Paper is in the process of publication).Google Scholar
  34. 34.
    D.A. Benson, R.N. Junck and J.A. Klosterbuer, Air Force Weapons Laboratory Tech. Rept., No. 70–169, Kirtland, New Mexico, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • S. R. Urzendowski
    • 1
  • A. H. Guenther
    • 1
  1. 1.Air Force Weapons LaboratoryKirtland Air Force BaseUSA

Personalised recommendations