Skip to main content

Part of the book series: Developments in Mathematics ((DEVM,volume 1))

Abstract

This paper is a comprehensive study of the set of totients, i.e., the set of values taken by Euler’s Φ-function. The main functions studied are V(x), the number of totients ≥x, A(m), the number of solutions of Φ(x) = m (the “multiplicity” of m), and V k (x), the number of mx with A(m) =k. The first of the main results of the paper is a determination of the true order of V (x). It is also shown that for each k ≥ 1, if there is a totient with multiplicity k then V k (x) ≫ V(x). Sierpiński conjectured that every multiplicity k ≥ 2 is possible, and we deduce this from the Prime k-tuples Conjecture. An older conjecture of Carmichael states that no totient has multiplicity 1. This remains an open problem, but some progress can be reported. In particular, the results stated above imply that if there is one counterexample, then a positive proportion of all totients are counterexamples. The lower bound for a possible counterexample is extended to (math) and the bound lim inf x→∞ V 1(x)/V(x) ≤ 10-5.000.000.000 is shown. Determining the order of V(x) and V k (x) also provides a description of the “normal” multiplicative structure of totients. This takes the form of bounds on the sizes of the prime factors of a pre-image of a typical totient. One corollary is that the normal number of prime factors of a totient ≤ x is c log logx, where c ≈ 2.186. Lastly, similar results are proved for the set of values taken by a general multiplicative arithmetic function, such as the sum of divisors function, whose behavior is similar to that of Euler’s function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Baker and G. Harman, “The difference between consecutive primes,” Proc. London Math. Soc. 72(3) (1996), 261–280.

    Article  MATH  MathSciNet  Google Scholar 

  2. P.T. Bateman and R.A. Horn, “A heuristic asymptotic formula concerning the distribution of prime numbers,” Math. Comp. 16 (1962), 363–367.

    Article  MATH  MathSciNet  Google Scholar 

  3. R.D. Carmichael, “On Euler’s ϕ-function,” Bull. Amer. Math. Soc. 13 (1907), 241–243.

    Article  MATH  MathSciNet  Google Scholar 

  4. R.D. Carmichael, “Note on Euler’s ϕ-function,” Bull. Amer. Math. Soc. 28 (1922), 109–110.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Cohen, “Arithmetical functions associated with the unitary divisors of an integer,” Math. Z. 74 (1960), 66–80.

    Article  MATH  MathSciNet  Google Scholar 

  6. L.E. Dickson, “A new extension of Dirichlet’s theorem on prime numbers,” Messenger of Math. 33 (1904), 155–161.

    Google Scholar 

  7. P. Erdős, “On the normal number of prime factors of p — 1 and some related problems concerning Euler’s ϕ-function,” Quart. J. Math. (Oxford) (1935), 205–213.

    Google Scholar 

  8. P. Erdős, “Some remarks on Euler’s ϕ-function and some related problems,” Bull. Amer. Math. Soc. 51 (1945), 540–544.

    Article  MathSciNet  Google Scholar 

  9. P. Erdős, “Some remarks on Euler’s ϕ-function,” Acta Arith. 4 (1958), 10–19.

    MathSciNet  Google Scholar 

  10. P. Erdős and R.R. Hall, “On the values of Euler’s ϕ-function,” Acta Arith. 22 (1973), 201–206.

    MathSciNet  Google Scholar 

  11. P. Erdős and R.R. Hall, “Distinct values of Euler’s ϕ-function,” Mathematika 23 (1976), 1–3.

    Article  MathSciNet  Google Scholar 

  12. P. Erdős and C. Pomerance, “On the normal number of prime factors of ϕ(n)” ,Rocky Mountain J. of Math. 15 (1985), 343–352.

    Article  Google Scholar 

  13. K. Ford and S. Konyagin, “On two conjectures of Sierpiński concerning the arithmetic functions σ and ϕ,” Proceedings of the Number Theory Conference dedicated to Andrzej Schinzel on his 60th birthday (to appear).

    Google Scholar 

  14. K. Ford, “The number of solutions of ϕ(x) = mAnnals of Math. (to appear).

    Google Scholar 

  15. J. Friedlander, “Shifted primes without large prime factors,” Number theory and applications (Banff, AB, 1988), Kluwer Acad. Publ., Dorbrecht 1989, pp. 393–401.

    Google Scholar 

  16. H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.

    MATH  Google Scholar 

  17. R.R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, 1988.

    Book  MATH  Google Scholar 

  18. G.H. Hardy and J.E. Littlewood, “Some problems of ‘Partitio Numerorum’: III. On the representation of a number as a sum of primes,” Acta Math. 44 (1923) 1–70.

    Article  MATH  MathSciNet  Google Scholar 

  19. G.H. Hardy and S. Ramanujan, “The normal number of prime factors of a number n,” Quart. J. Math. 48 (1917), 76–92.

    MATH  Google Scholar 

  20. A. Hildebrand and G. Tenenbaum, “Integers without large prime factors,” J. Théor. Nombres Bordeaux 5 (1993), 411–484.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Klee, “On a conjecture of Carmichael,” Bull. Amer. Math. Soc. 53 (1947), 1183–1186.

    Article  MATH  MathSciNet  Google Scholar 

  22. L.E. Mattics, “A half step towards Carmichael’s conjecture, solution to problem 6671,” Amer. Math. Monthly 100 (1993), 694–695.

    Article  MathSciNet  Google Scholar 

  23. H. Maier and C. Pomerance, “On the number of distinct values of Euler’s ϕ-function,” Acta Arith. 49 (1988), 263–275.

    MATH  MathSciNet  Google Scholar 

  24. P. Masai and A. Valette, “A lower bound for a counterexample to Carmichael’s Conjecture,” Bollettino U.M.I. (1982), 313–316.

    Google Scholar 

  25. S. Pillai, “On some functions connected with ϕ(n),” Bull. Amer. Math. Soc. 35 (1929), 832–836.

    Article  MATH  MathSciNet  Google Scholar 

  26. C. Pomerance, “On the distribution of the values of Euler’s function,” Acta Arith. 47 (1986), 63–70.

    MATH  MathSciNet  Google Scholar 

  27. C. Pomerance, “Problem 6671,” Amer. Math. Monthly 98 (1991), 862.

    MathSciNet  Google Scholar 

  28. A. Schinzel, “Sur l’equation ϕ(x) = m,” Elem. Math. 11 (1956), 75–78.

    MATH  MathSciNet  Google Scholar 

  29. A. Schinzel, “Remarks on the paper ‘Sur certaines hypothèses concernant les nombres premiers’“, Acta Arith. 7 (1961/62), 1–8.

    MATH  MathSciNet  Google Scholar 

  30. A. Schinzel and W. Sierpiński, “Sur certaines hypothèses concernant les nombres premiers,” Acta Arith. 4 (1958), 185–208.

    MATH  MathSciNet  Google Scholar 

  31. A. Schlafly and S. Wagon, “Carmichael’s conjecture on the Euler function is valid below 1010,000,000,” Math. Comp. 63 (1994), 415–419.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Alladi P. D. T. A. Elliott A. Granville G. Tenebaum

Additional information

Dedicated to the memory of Paul Erdős

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ford, K. (1998). The Distribution of Totients. In: Alladi, K., Elliott, P.D.T.A., Granville, A., Tenebaum, G. (eds) Analytic and Elementary Number Theory. Developments in Mathematics, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4507-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4507-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5058-1

  • Online ISBN: 978-1-4757-4507-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics