Advertisement

Abstract

There are different means to measure the computational complexity of algorithms For fast motion estimation algorithms, most of the complexity analysis results presented in literature are based on the average number of search points per macro-block. However, with this simple method of using the number of search points, the computational and the memory bandwidth requirements of the entire algorithm (which includes e.g. pel addressing, pel access, decision calculations, filtering, etc.) are not taken into account.

Keywords

Memory Access Basic Block Memory Bandwidth Object File Machine Instruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Bak 91].
    Nabajyoti Barkakati: Object-Oriented Programming in C++, SAMS, 1991Google Scholar
  2. [Be 95].
    Michael Bekerman and Avi Mendelson: „A Performance Analysis of Pentium Processor Systems“, IEEE Micro, October 1995, pp 72–83Google Scholar
  3. [Bha 96].
    Dilep P. Bhandarkar: Alpha Implementations and Architecture: Complete Reference and Guide, Digital Press, 1996Google Scholar
  4. [Cha 91].
    Steve Chamberlain: libbfd - The Binary File Descriptor Library, April 1991, documentation for the GNU libbfd library, in package http://prep.ai.mit.edu/pub/gnu/binutils-2.6.ta.gzGoogle Scholar
  5. [Con 95].
    Thomas M. Conte, Charles E. Girmac (Editors): Fast Simulation of Computer Architectures, Kluwer Academic Publishers, 1995Google Scholar
  6. [Dall 94].
    Sonia L.Q. Dall’Agnol, Abraham Alcaim, Jose Roberto B. de Marca: “Performance of LSF Vector Quantizers for VSELP Coders in Noisy Channels”, European Transactions on Telecommunications and related technologies, Vo$15, No. 5, Sept-Oct 1994, p559Google Scholar
  7. [Fen 93].
    Jay Fenlason and Richard M. Stallman: GNU gprof, Jan 1993, documentation for the GNU profiler, in package: http://prep.ai.mit.edu/pub/gnu/binutils-2.6.ta.gzGoogle Scholar
  8. [Grah 82].
    S. Graham, P. Kessler, M. McKusick, gprof: A Call Graph Execution Profiler, in Proceedings of the SIGPLAN82 Symposium on Compiler Construction, SIGPLAN Notices Vol. 17, No. 2, June 1982, pp 120–126CrossRefGoogle Scholar
  9. GCT) Brian Manck: Genenc Coverage Tool (GCT): http://cs.umc.edu/pub/testingGoogle Scholar
  10. GNU CC) The GNU C compiler: f tp: //prep.ai.mit. edu/pub/gnu/gcc- 2.7.2. tar. gzGoogle Scholar
  11. GNU MAN) Richard M. Stallman: Using and Porting GNU CC, manual for the GNU C compiler, http://prep.ai.mit.edu/pub/gnuGoogle Scholar
  12. [Grah 83].
    S. Graham, P. Kessler, M. McKusick, An Execution Profiler for Modular Programs, Software—Practice and Experience, 1993, Vol 13, p671–685CrossRefGoogle Scholar
  13. [Hen 90].
    John L. Hennesey, David A. Patterson: Computer architecture a quantitative approach, Kaufmann, (german translation used, publisher: Vieweg, 1994) (iprof) iprof -Software available under GNU licence terms. For software location and information send email to:Peter. KuhnGoogle Scholar
  14. [Itoh 95].
    K. Itoh, K. Sasaki, Y. Nakagome: “Trends in low-power RAM circuit technologies”, Proceedings of the IEEE, vol. 83, Apr. 1995, pp 524–543CrossRefGoogle Scholar
  15. [Kuhn 98a].
    Kuhn, P., Stechele, W.: “Complexity Analysis of the Emerging MPEG-4 Standard as a Basis for VLSI Implementation”, vol. SPIE 3309 Visual Communications and Image Processing, San Jose, Jan. 1998, pp. 498–509Google Scholar
  16. [Kuhn 98b].
    Kuhn P., et al.: “Complexity and PSNR-Comparison of several Fast Motion Estimation Algorithms for MPEG-4”, vol. SPIE 3460 Applications of Digital Image Processing XXI, San Diego, July 1998Google Scholar
  17. [Larus 90].
    James R Larus: Abstract Execution: A Technique for Efficiently Tracing Programs, Software Practice and Expierience, Volume 20, Number 12, Dec. 1990, pp 1241–1258Google Scholar
  18. [Larus 93].
    James R. Larus: Efficient Program Tracing, IEEE Computer, Volume 26, Number 5, May 1993, pp 52–60CrossRefGoogle Scholar
  19. [Larus 94].
    James R. Larus, Thomas Ball. Rewriting Executable Files to Measure Program Behavior, Software Practice and Expierience, Volume 24, Number 2, Feb. 1994, pp 197–218CrossRefGoogle Scholar
  20. [Larus 95].
    James R. Larus and Eric Schnarr, EEL. Machine-Independent Executable Editing, Proceedings of the SIGPLAN ‘85 Conference on Programming Language Design and Implementation ( PLDI ), June 1995, pp 291–300Google Scholar
  21. [M 2863].
    Kuhn P.: “A Complexity Analysis Tool: iprof (version 0.3)”, ISO/IEC JTC1/SC29/WGl l/M2863, Fribourg (CH), Switzerland, October 1997Google Scholar
  22. [M 1056].
    Kuhn, P.. “A portable Instruction Level Profiler for Complexity Analysis - Software”, ISO/IEC JTCl/ SC29/WG11 MPEG96/M1056, Tampere, Finland, 1996Google Scholar
  23. [M 0921].
    Kuhn, P.: “A portable Instruction Level Profiler for Complexity Analysis - Documentation”, ISO/IEC JTCl/ SC29/WG11 MPEG96/M0921, Tampere, Finland, 1996Google Scholar
  24. [M 08381].
    Kuhn, P.: “Instrumentation Tools and Methods for MPEG-4 VM: Review and a new Proposal”, ISO/IEC JTC1/SC29/WG1I MPEG96/M0838, Firence, Italy, 1996Google Scholar
  25. [Marca 94].
    Jose Roberto B. de Marca: “An LSF Quantizer for the North-American Half-Rate Speech Coder”, IEEE Transactions on Vehicular Technology, Vol. 43, No. 3, Aug. 1994Google Scholar
  26. [Meh 96].
    Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin: “Instruction Level Power Profiling”, ICASSP 96, p3327Google Scholar
  27. [Nacht 98].
    Lode Nachtergaele, Francky Catthoor, Bhanu Kapoor, Stefan Jannsens, Dennis Moolenaar: “Low-Power Data Transfer and Storage exploration for H.263 video decoder system”, IEEE Journal on Selected Areas in Communications, vol. 16, no. 1, Jan 1998, pp 120–129CrossRefGoogle Scholar
  28. [Oli 97].
    Geraldo Cesar de Oliveira, Abraham Alcaim: “On fast motion compensation algorithms for video coding”, International Picture Coding Symposium, PCS 97, Berlin Sept. 1997, pp 467–472Google Scholar
  29. [Sri 94].
    Amitabh Srivastava, Alan Eustace: ATOM: A system for building customized program analysis tools, Proceedings of the SIGPLAN 1994 Conference on Programming Language Design an Implementation (PLDI), Orlando ( Florida, USA ), Jun. 1994, pp. 196–205Google Scholar
  30. [Strou 91].
    Bjarne Stroustroup: The C++ Programming Language, 2’ Edition, Addison Wesley, 1991Google Scholar
  31. [Tiw 96].
    Vivek Tiwan, Sharad Malik, Andrew Wolfe, Mike Tien-Chien Lee: “Instruction Level Power Analysis and Optimization of Software”, Journal of VLSI Signal Processing Systems, vol. 13, 1996, pp 223–238.CrossRefGoogle Scholar
  32. [Tremb 95].
    Marc Tremblay, Guillermo Maturana, Atsushi Inoue, Les Kohn: A fast and flexible performance simulator for micro-architecture trade-off analysis on UItraSPARC-I, 32th Design Automation Conference, DAC 95, 1995.Google Scholar
  33. [Wea 94].
    David L. Weaver, Tom Germond: „The Sparc Architecture Manual“, 1994, Prentice HallGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Peter Kuhn
    • 1
  1. 1.Technical University of MunichGermany

Personalised recommendations