Lagrangian Dispersion Models

  • Paolo Zannetti


As introduced in Chapter 6, Lagrangian models provide an alternative method for simulating atmospheric diffusion. They are called Lagrangian because they describe fluid elements that follow the instantaneous flow. The “Lagrangian” term was initially used to distinguish the Lagrangian box models described in Section 8.2 from the Eulerian box models described in Section 6.4. In this case, the difference is manifest, since the Eulerian box does not move, while the Lagrangian box follows the average wind trajectory. The term has, however, been extended to describe all models in which plumes are broken up into “elements,” such as segments (see Section 7.7), puffs (see Section 7.8) or fictitious particles (see Section 8.3).


Langevin Equation Lagrangian Particle Plume Rise Meteorological Input Atmospheric Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baerentsen, J.H., and R. Berkovicz (1984): Monte Carlo simulation of plume dispersion in the convective boundary layer. Atmos. Environ., 18: 701–712.CrossRefGoogle Scholar
  2. Briggs, G.A. (1975): Plume rise predictions, in Lectures on Air Pollution and Environmental Impact Analyses. edited by D.A. Augen, Boston: American Meteorological Society.Google Scholar
  3. Briggs, G.A. (1983): Diffusion modeling with convective scaling. AMS specialty conference on Air Quality Modeling of the Urban Boundary Layer, Baltimore.Google Scholar
  4. Brusasca, G., G. Tinarelli, D. Anfossi, P. Zannetti (1987): Particle modeling simulation of atmospheric dispersion using the MC—LAGPAR package. Envir. Software, 2: 151–158.CrossRefGoogle Scholar
  5. Cogan, J.L. (1985): Monte Carlo simulations of buoyancy dispersion. Atmos. Environ., 19: 867–878.CrossRefGoogle Scholar
  6. Davis, R.E. (1982): On relating Eulerian and Lagrangian velocity statistics: Single particles in homogeneous flows. J. Fluid Mech., 114: 1–26.CrossRefGoogle Scholar
  7. Deardorff, J.W. (1974): Three—dimensional numerical study of the height and mean structure of a heated boundary layer. Boundary—Layer Meteor., 7: 81–106.Google Scholar
  8. Baas, A.F., H. van Dop, and F.T. Nieuwstadt (1986): An application of the Langevin equation for inhomogeneous conditions to dispersion in a convection boundary layer. Quarterly J. Roy. Meteor. Soc., 112: 165–180.CrossRefGoogle Scholar
  9. Drivas, P.J., M.W. Chan, and L.G. Wayne (1977): Validation of an improved photochemical air quality simulation model. Proceedings, AMS joint conference on Applications of Air Pollution Meteorology. Salt Lake City, Utah. November.Google Scholar
  10. Gifford, F.A. (1982): Horizontal diffusion in the atmosphere: Lagrangian—dynamical theory. Atmos. Environ., 16: 505–512.CrossRefGoogle Scholar
  11. Durbin, P.A. (1980): A stochastic model of two—particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech., 100: 279–302.CrossRefGoogle Scholar
  12. Gaffen, D. J., C. Benocci, and D. Olivari (1987): Numerical modeling of buoyancy dominated dispersal using a Lagrangian approach. Atmos. Environ., 21: 1285–1293.Google Scholar
  13. Gingold, R.A., and J.J. Monaghan (1982): Kernel estimates as a basis for general particle methods in hydrodynamics. J. Computational Phys., 46: 429–453.CrossRefGoogle Scholar
  14. Hall, C.D. (1975): The simulation of particle motion in the atmosphere by a numerical random—walk model. Quarterly J. Roy. Meteor. Soc., 101: 235–244.CrossRefGoogle Scholar
  15. Hanna, S.R. (1979): Some statistics of Lagrangian and Eulerian wind fluctuations. J. Appl. Meteor., 18: 518–525.CrossRefGoogle Scholar
  16. Hanna, S.R., G.A. Briggs, and R.P. Hosker, Jr. (1982): Handbook on Atmospheric Diffusion, edited by J.S. Smith, Washington, D.C.: Technical Information Center, U.S. Department of Energy.Google Scholar
  17. Hanna, S.R. (1981): Lagrangian and Eulerian time scale relations in the daytime boundary layer. J. Appl. Meteor., 20: 242–249.CrossRefGoogle Scholar
  18. Hockney, R.W., and J.W. Eastwood (1981): Computer Simulation Using Particles. New York: McGraw—Hill, Inc.Google Scholar
  19. Janicke, L. (1981): Particle simulation of inhomogeneous turbulent diffusion. Proceedings, 12th International Technical Meeting of the NATO CCMS. Palo Alto, California: Plenum Press.Google Scholar
  20. Lamb, R.G. (1978): A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer. Atmos. Environ., 12: 1297–1304.CrossRefGoogle Scholar
  21. Reid, J.D. (1979): Markov chain simulations of vertical dispersion in the neutral surface layer for surface and elevated releases. Boundary-Layer Meteor., 16: 3–22.Google Scholar
  22. Lamb, R.G., H. Hogo, and L.E. Reid (1979a): A Lagrangian Monte Carlo model of air pollutant transport, diffusion and removal processes. 4th AMS Symposium on Turbulence, Diffusion and Air Pollution. Reno, Nevada. January.Google Scholar
  23. Lamb, R.G., H. Hogo, and L.E. Reid (1979b): A Lagrangian approach to modeling air pollutant dispersion: Development and testing in the vicinity of a roadway. EPA Research Report EPA–600/4–79–023.Google Scholar
  24. Lamb, R.G. (1981): A scheme for simulating particle pair motions in turbulent fluid. J. Computational Phys., 39: 329–346.CrossRefGoogle Scholar
  25. Lange, R. (1978): ADPIC - A three-dimensional particle-in-cell model for the dispersal of atmospheric pollutants and its comparison to regional tracer studies. J. Appl. Meteor., 17: 320.CrossRefGoogle Scholar
  26. Legg, B.J., and M.R. Raupach (1982): Markov chain simulation of particle dispersion in in-homogeneous flows: The mean drift velocity induced by a gradient in Eulerian velocity variance. Boundary-Layer Meteor., 24: 3–13CrossRefGoogle Scholar
  27. Legg, B.J. (1983): Turbulent dispersion from an elevated line source: Markov chain simulations of concentration and flux profiles. Quarterly J. Roy. Meteor. Soc., 109: 645–660.CrossRefGoogle Scholar
  28. Lee, J.T., G.L. Stone, R.E. Lawson, Jr., and M. Shipman (1985): Monte Carlo simulation of two-particle relative diffusion using Eulerian Statistics. Los Alamos National Laboratory Document LA-UR-85–2008, Los Alamos, New Mexico.Google Scholar
  29. Ley, A.J. (1982): A random walk simulation of two-dimensional turbulent diffusion in the neutral surface layer. Atmos. Environ., 16: 2799–2808.CrossRefGoogle Scholar
  30. Ley, A.J., and D.J. Thomson (1983): A random walk model of dispersion in the diabatic surface layer. Quarterly J. Roy. Meteor. Soc., 109: 847–880.Google Scholar
  31. Lorimer, G.S. (1986): The kernel method for air quality modelling; I. Mathematical foundation. Atmos. Environ., 20: 1447–1452.CrossRefGoogle Scholar
  32. Lurmann, F.W., D.A. Gooden, and H.M. Collins, Eds. (1985): User’s guide to the PLMSTAR air quality simulation model. Environmental Research and Technology, Inc. Document M-2206–100, Newbury Park, California.Google Scholar
  33. Martinez, J.R., R.A. Nordsieck, and M.A. Hirschberg (1973): User’s guide to diffusion/kinetics (DIFKIN) code. General Research Corporation Final Report CR-2–273/1, prepared for the U.S. Environmental Protection Agency.Google Scholar
  34. Nieuwstadt, F.T., and H. van Dop, Eds. (1982): Atmospheric Turbulence and Air Pollution Modeling. Dordrecht, Holland: D. Reidel.Google Scholar
  35. Novikov, E.A. (1969): Appl. Math. Mech., 33: 887.Google Scholar
  36. Novikov, E.A. (1986): The Lagrangian-Eulerian probability relations and the random force method for nonhomogeneous turbulence. Phys. of Fluids, 29: 3907–3909.CrossRefGoogle Scholar
  37. Poreh, M., and J.E. Cermak (1984): Wind tunnel simulation of diffusion in a convective boundary layer. Proceedings, 29th Oholo Conference on Boundary Layer Structure-Modelling and Application to Air Pollution and Wind Energy. Israel. March.Google Scholar
  38. Rodriguez, D.J., G.D. Greenly, P.M. Gresho, R. Lange, B.S. Lawyer, L.A. Lawson, and H. Walker (1982): User’s guide to the MATHEW/ADPIC models. Lawrence Livermore National Laboratory Document UASG 82–16, University of California Atmospheric and Geophysical Sciences Division, Livermore, California.Google Scholar
  39. Sawford, B.L. (1983): The effect of Gaussian particle-pair distribution functions in the statistical theory of concentration fluctuations in homogeneous turbulence. Quarterly J. Roy. Meteor. Soc., 109: 339–354.Google Scholar
  40. Sawford, B.L. (1984): The basis for, and some limitations of, the Langevin equation in atmospheric relative dispersion modelling. Atmos. Environ., 11: 2405–2411.Google Scholar
  41. Sawford, B.L. (1985): Lagrangian simulation of concentration mean and fluctuation fields. J. Clim. Appl. Meteor., 24: 1152–1166.CrossRefGoogle Scholar
  42. Seinfeld, J.H. (1975): Air Pollution - Physical and Chemical Fundamentals. New York: McGraw-Hill.Google Scholar
  43. Smith, F.B. (1968): Conditioned particle motion in a homogeneous turbulent field. Atmos. Environ., 2: 491–508.CrossRefGoogle Scholar
  44. Stern, A.C., R.W. Boubel, D.B. Turner, and D.L. Fox (1984): Fundamentals of Air Pollution. Orlando, Florida: Academic Press.Google Scholar
  45. Taylor, G.I. (1921): Diffusion by continuous movements. Proceedings, London Math. Soc., 20: 196–211.Google Scholar
  46. Tran, K. (1981): User’s guide for photochemical trajectory model TRACE. Applied Modeling, Inc., Report 81/003. California.Google Scholar
  47. Thomson, D.J. (1984): Random walk modelling of diffusion in inhomogeneous turbulence. Quarterly J. Roy. Meteor. Soc., 110: 1107–1120.CrossRefGoogle Scholar
  48. Thomson, D.J. (1987): J. Fluid Mech., 180: 529.CrossRefGoogle Scholar
  49. Dop, H., F.T. Nieuwstadt, and J.C. Hunt (1985): Random walk models for particle dis- placements in inhomogeneous unsteady turbulent flows. Phys. of Fluids, 28: 1639–1653.CrossRefGoogle Scholar
  50. Willis, G.E., and J. W. Deardorff (1978): A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer. Atmos. Environ., 12: 1305–1311.CrossRefGoogle Scholar
  51. Willis, G.E., and J. W. Deardorff (1981): A laboratory study of dispersion from a source in the middle of the convective mixed layer. Atmos. Environ., 15: 109–117.CrossRefGoogle Scholar
  52. Wilson, J.D., G. W. Thurtell, and G.E. Kidd (1981): Numerical simulation of particle trajectories in inhomogeneous turbulence; III. Comparison of predictions with experimental data for the atmospheric surface layer. Boundary-Layer Meteor., 12: 423–441.CrossRefGoogle Scholar
  53. Yamada, T., and S.S. Bunker (1988): Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J. Appl. Meteor., 27: 562–578.CrossRefGoogle Scholar
  54. Yamamoto, S., M. Gamo, and Y. Osayuki (1982): Observational study of the fine structure of the convective atmospheric boundary layer. J. Meteor. Soc. of Japan, 60: 882–888.Google Scholar
  55. Zannetti, P. (1981): Some aspects of Monte Carlo type modeling of atmospheric turbulent diffusion. Preprints, Seventh AMS conference on Probability and Statistics in Atmospheric Sciences. Monterey, California. November, 1978.Google Scholar
  56. Zannetti, P., and N. Al-Madani (1983): Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. Proceedings, 14th international technical meeting on Air Pollution Modeling and its Application. Copenhagen, Denmark. September.Google Scholar
  57. Zannetti, P. (1984): New Monte Carlo scheme for simulating Lagrangian particle diffusion with wind shear effects. Appl. Math. Modelling, 8: 188–192.CrossRefGoogle Scholar
  58. Zannetti, P. (1986): Monte-Carlo simulation of auto-and cross-correlated turbulent velocity fluctuations (MC-LAGPAR II Model). Environ. Software, 1: 26–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations