The Gaussian plume model is the most common air pollution model. It is based on a simple formula that describes the three-dimensional concentration field generated by a point source under stationary meteorological and emission conditions. The Gaussian plume model is visualized in Figure 7-1, where, for simplicity, the plume is advected toward the positive x-axis.


Gaussian Model Stability Class Atmospheric Dispersion Gaussian Equation Plume Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benkley, C.W., and A. Bass (1979): Development of mesoscale air quality simulation models; Volume 3, User’s Guide to MESOPUFF (Mesoscale Puff) model. EPA Document 600/7-79—XXX, Research Triangle Park, North Carolina. (See also Scire et al. (1984): User’s guide to the MESOPUFF II model and related processor programs. EPA Document 600/8-84-013.)Google Scholar
  2. Best, P.R., M. Kanowski, L. Stumer, and D. Green (1986): Convection dispersion modeling utilizing acoustic sounder information. Atmos. Res., 20: 173.CrossRefGoogle Scholar
  3. Bowers, J., J. Bjorklund, and C. Cheney (1979): Industrial source complex (ISC) dispersion model user’s guide, Vol. I. Research Triangle Park, North Carolina. EPA Document EPA-450/4-79-030. NTIS Publication PB80-133044.Google Scholar
  4. Briggs, G.A. (1973): Diffusion estimation for small emissions, in environmental research laboratories. Air Resources Atmospheric Turbulence and Diffusion Laboratory 1973 Annual Report. USAEC Report ATDL-106, National Oceanic and Atmospheric Administration, December 1974.Google Scholar
  5. Briggs, G.A. (1985): Analytical parameterization of diffusion: The convective boundary layer. J.Climate and Appl. Meteor., 24: 1167.CrossRefGoogle Scholar
  6. Calder, K.L. (1971): Proceedings, 2nd Meeting of Expert Panel Air Pollution Modeling, NATO/CCMS Air Pollution, No. 5.Google Scholar
  7. Chan, M.W., and I.H. Tombach (1978): AVACTA - Air pollution model for complex terrain applications. AeroVironment Inc., Monrovia, California.Google Scholar
  8. Chan, M.W. (1979): A tracer experiment to determine the transport and diffusion of an elevated plume in complex terrain. Proceedings, 72nd Annual APCA Meeting, Cincinnati, Ohio, June.Google Scholar
  9. Chan, M.W., S.J. Head, and S. Machiraju (1979): Development and validation of an air pollution model for complex terrain application. Paper presented at NATO/CCMS Air Pollution Pilot Study. Rome, Italy. AeroVironment Technical Paper 9559, Monrovia, California.Google Scholar
  10. DeMarrais, G.A. (1978): Atmospheric stability class determinations on a 481—meter tower in Oklahoma. Atmos. Environ., 12: 1957 - 1964.Google Scholar
  11. Dobbins, R.A. (1979): Atmospheric Motion and Air Pollution. John Wiley Sons, New York.Google Scholar
  12. Draxler, R.R. (1976): Determination of atmospheric diffusion parameters. Atmos. Environ., 10: 99 - 105.CrossRefGoogle Scholar
  13. Draxler, R.R., and J.L. Heffler (1981): Workbook for estimating the climatology of regional—continental scale atmospheric dispersion and deposition over the United States. NOAA Technical Memorandum ERL ARL-96, Air Resources Laboratories, Silver Spring, Maryland.Google Scholar
  14. Environmental Research and Technology, Inc. (1984): User’s guide to the rough terrain diffusion model (RTDM). Environmental Research and Technology Document M2209 - 585, Concord, Massachusetts.Google Scholar
  15. Fabrick, A., R.C. Sklarew, and J.D. Wilson (1977): Point Source Modeling. Form Substance, Inc., Westlake Village, California.Google Scholar
  16. Gifford, F.A. (1961): Use of routine meteorological observations for estimating the atmospheric dispersion. Nucl. Safety, 2 (4): 47 - 57.Google Scholar
  17. Gifford, F.A. (1976): Consequences of effluent release. Nucl. Safety, 17 (1): 68 - 86.Google Scholar
  18. Green, A.E., R.P. Singhal, and R. Venkateswar (1980): Analytic extensions of the Gaussian plume model. JAPCA, 30 (7): 773 - 776.Google Scholar
  19. Gryning, S.E., A.A. Holtslag, J.S. Irwin, and B. Sivertsen (1987): Applied dispersion modeling based on meteorological scaling parameters. Atmos. Environ., 21: 79 - 89.CrossRefGoogle Scholar
  20. Hales, J.M., D.C. Powell, and T.D. Fox (1977): STRAM - An air pollution model incorporating non-linear chemistry, variable trajectories, and plume segment diffusion. U.S. EPA Document 450/3-77-012, Research Triangle Park, North Carolina.Google Scholar
  21. Hanna, S.R., et al. (1977): AMS Workshop on Stability Classification Schemes and Sigma Curves - Summary of Recommendations. J. Climate and Appl. Meteor., 58 (12): 1305 - 1309.Google Scholar
  22. Hanna, S.R., G.A. Briggs, and R.P. Hosker, Jr. (1982): Handbook on atmospheric diffusion. U.S. Department of Energy Document DOE/TIC-11223 (DE82002045), Office of Health and Environmental Research.Google Scholar
  23. Hanna, S.R., L.L. Schulman, R.J. Paine, and J.E. Pleim (1984): Users guide to the offshore and coastal dispersion (OCD) model. Environmental Research and Technology, Concord, Massachusetts. Contract No. 14-08-0001-21138.Google Scholar
  24. Hanna, S.R. (1989): Plume dispersion and concentration fluctuations in the atmosphere. Chapt. 14 Encyclopedia of Environmental Control Techology. Vol. 2. P.N. Cheremisinoff, editor. Houston, Texas: Gulf Publishing Company.Google Scholar
  25. Harvey, Jr., R.B., and J.N. Hamawi (1986): A modification of the Gaussian dispersion equation to accommodate restricted lateral dispersion in deep river valleys. APCA Note-Book, 36: 171.Google Scholar
  26. Huang, C.H. (1979): A theory of dispersion in turbulent shear flow. Atmos. Environ., 13: 453.CrossRefGoogle Scholar
  27. Irwin, J.S. (1979): Estimating plume dispersion - A recommended generalized scheme. Presented at 4th AMS Symposium on Turbulence and Diffusion, Reno, Nevada.Google Scholar
  28. Irwin, J.S. (1980): Dispersion estimates suggestion #9: Processing of wind data. U.S. EPA Docket Reference No. II-B-33, Research Triangle Park, North Carolina.Google Scholar
  29. Ludwig, F.L., L.S. Gasiorek, and R.E. Ruff (1977): Simplification of a Gaussian puff model for real-time minicomputer use. Atmos. Environ. 11: 431 - 436.CrossRefGoogle Scholar
  30. Lupini, R. and T. Tirabassi (1979): Gaussian plume model and advection-diffusion equation: An attempt to connect the two approaches. Atmos. Environ., 13: 1169 - 1174.CrossRefGoogle Scholar
  31. Lyons, W.A., and H.S. Cole (1983): Fumigation and plume trapping on the shores of Lake Michigan during stable onshore flow. J. Appl. Meteor., 12: 494 - 510.CrossRefGoogle Scholar
  32. Lamb, R.G. (1969): An air pollution model of Los Angeles. M.S. thesis, University of California, Los Angeles, 120 pp. (see Lamb, R.G., and M. Neiburger (1971): An interim version of a generalized urban diffusion model. Atmos. Environ., 5: 239 - 264 ).Google Scholar
  33. Martin, D.O. (1971): An urban diffusion model for estimating long-term average values of air quality. JAPCA, 21: 16 - 23.Google Scholar
  34. McElroy, J.L., and F. Pooler (1968): St. Louis dispersion study; Volume II, Analysis. National Air Pollution Control Administration, Publication AP-53, 51. U.S. Dept. of Health, Education and Welfare, Arlington, Virginia.Google Scholar
  35. Melli, P., and E. Runca (1979): Gaussian plume model parameters for ground-level and elevated sources derived from the atmospheric diffusion equation in a neutral case. J. Appl. Meteor., 18: 1216 - 1221.CrossRefGoogle Scholar
  36. Pasquill, F. (1971): Atmospheric dispersion of pollution. J. Roy. Meteor. Soc., 97: 369 - 395.CrossRefGoogle Scholar
  37. Panofsky, H.A., and J.A. Dutton (1984): Atmospheric Turbulence. New York: John Wiley.Google Scholar
  38. Pasquill, F. (1976): Atmospheric dispersion parameters in Gaussian plume modeling; Part 2, Possible requirements for change in the Turner Workbook values. U.S. EPA Document EPA-600/4-76-030b, Washington, D.C.Google Scholar
  39. Phillips, P., and H.A. Panofsky (1982): A reexamination of lateral dispersion from continuous sources. Atmos. Environ., 16: 1851 - 1859.CrossRefGoogle Scholar
  40. Roberts, J.J., E.S. Croke, and A.S. Kennedy (1970): An urban atmospheric dispersion model. Proceedings, Symposium on Multiple-Source Urban Diffusion Models. Air Pollution Control Office Publication AP-86, pp. 6. 1-6. 72.Google Scholar
  41. Robson, R.E. (1983): On the theory of plume trapping by an elevated inversion. Atmos. Environ., 17: 1923 - 2930.CrossRefGoogle Scholar
  42. Runca, E. (1977): Transport and diffusion of air pollutants from a point source. Proceedings, IFIP Working Conference on Modeling and Simulation of Land, Air and Water Resource System, Ghent, Belgium.Google Scholar
  43. Schulman, L.L., and J.S. Scire (1980): Development of an air quality dispersion model for aluminum reduction plants. Environmental Research and Technology. Document P-7304A, Concord, Massachusetts.Google Scholar
  44. Schulman, L.L., and S.R. Hanna (1986): Evaluation of downwash modification to the industrial source complex model. JAPCA, 36: 256 - 264.Google Scholar
  45. Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley Sons.Google Scholar
  46. Sheih, C.M. (1978): A puff pollutant dispersion model with wind shear and dynamic plume rise. Atmos. Environ., 12: 1933 - 1938.CrossRefGoogle Scholar
  47. Smith, M.E. (1968): Recommended guide for the prediction of the dispersion of airborne effluents. 1st edition. American Society of Mechanical Engineers, New York.Google Scholar
  48. Stern, A.C., Ed. (1976): Air Pollution. Volume I, 3rd Edition. New York: Academic Press.Google Scholar
  49. Strimaitis, D.G., D.C. DiCristofaro, and T.F. Lavery (1986): The complex terrain dispersion model. EPA Document EPA-600-D-85/220, Atmospheric Sciences Research Laboratory, Research Triangle Park, North Carolina.Google Scholar
  50. Turner, D.B. (1970): Workbook of atmospheric dispersion estimates. EPA, Research Triangle Park, North Carolina. U.S. EPA Ref. AP-26 (NTIS PB 191-482.)Google Scholar
  51. U.S. Environmental Protection Agency (1978): Guideline on air quality models. EPA Document EPA-450/2-78-025. Research Triangle Park, North Carolina.Google Scholar
  52. U.S. Environmental Protection Agency (1986): Guideline on air quality models (Revised). U.S. EPA Document EPA-450/2-78-027R. Research Triangle Park, North Carolina.Google Scholar
  53. van Dop, H., R. Steenkist, and F.T. Nieuwstadt (1979): Revised estimates for continuous shoreline fumigation. J. Appl. Meteor., 18: 133 - 137.Google Scholar
  54. Veigele, W.J., and J.H. Head (1978): Derivation of the Gaussian plume model. JAPCA, 28: 1139 - 1141.Google Scholar
  55. Yamartino, R.J. (1977): A new method for computing pollutant concentrations in the presence of limited vertical mixing. APCA Note-Book, 27 (5): 467.Google Scholar
  56. Zannetti, P. (1981): An improved puff algorithm for plume dispersion simulation. J. Applied Meteor., 20 (10): 1203 - 1211.CrossRefGoogle Scholar
  57. Zannetti, P., and N. Al-Madani (1983a): Numerical simulations of Lagrangian particle diffusion by Monte-Carlo techniques. VIth World Congress on Air Quality ( IUAPPA ), Paris, May.Google Scholar
  58. Zannetti, P., and N. Al-Madani (1983b): Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. Fourteenth ITM Meeting on Air Pollution Modeling and Its Application. Copenhagen, Denmark, September.Google Scholar
  59. Zannetti, P. (1986): A new mixed segment-puff approach for dispersion modeling. Atmos. Environ., 20: 1121 - 1130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations