Meteorological Modeling

  • Paolo Zannetti


Meteorological models are developed for two purposes:
  • to understand local, regional, or global meteorological phenomena

  • to provide the meteorological input required by air pollution diffusion models


Wind Field Prognostic Model Mesoscale Model Complex Terrain Diagnostic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G.E. (1971): Mesoscale influences on wind fields. J. Appl. Meteor., 10:377–386.Google Scholar
  2. Bornstein, R.D., S. Klotz, R. Street, U. Pechinger, R. Miller (1987): Modeling the polluted coastal urban environment. Vol. 1. The PBL Model. EPRI Report EA-5091, Palo Alto, California.Google Scholar
  3. Chang, J.S., R.A. Brost, I.S. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, and C.J. Walcek (1987): A three—dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res., 92: 14681–14700.CrossRefGoogle Scholar
  4. Clark, T.L. (1977): A small—scale dynamic model using a terrain—following coordinate transformation. J. Comput. Phys., 24: 186–215.CrossRefGoogle Scholar
  5. Danard, M. (1977): A simple model for mesoscale effects of topography on surface winds. Mon. Wea. Rev., 105: 572.Google Scholar
  6. Davis, C.G., S.S. Bunker, and J.P. Mutschlecner (1984): Atmospheric transport models for complex terrain. J. Climate and Appl. Meteor., 23: 235–238.Google Scholar
  7. Dickerson, M.H. (1978): MASCON–A mass—consistent atmospheric flux model for regions with complex terrain. J. Appl. Meteor., 17: 241–253.CrossRefGoogle Scholar
  8. Douglas, S.G., and R.C. Kessler (1988): User’s guide to the diagnostic wind model (Version 1. 0 ). Systems Applications, Inc., San Rafael, California.Google Scholar
  9. Fast, J.D., and E.S. Takle (1988): Evaluation of an alternative method for numerically model- ing nonhydrostatic flows over irregular terrain. Boundary—Layer Meteor,44:181–206.Google Scholar
  10. Fruehauf, G., P. Halpern, P. Lester (1988): Objective analysis of a two—dimensional scalar field by successive corrections using a personal computer. Environ. Software, 3 (2): 72–80.CrossRefGoogle Scholar
  11. Geai, P. (1987): Reconstitution tridimensionnelle d’un champ de vent dans un domaine a’ topographie complexe a’ partir de meusures in situ. EDF, Chatou, France, Final Report DER/HE/34–87. 05.Google Scholar
  12. Goodin, W.R., G.J. McRae, and J.H. Seinfeld (1980): An objective analysis technique for constructing three—dimensional urban—scale wind fields. J. Appl. Meteor., 19: 98–108.CrossRefGoogle Scholar
  13. Haney, J.L., S.G. Douglas, L.R. Chinkin, D.R. Souten, C.S. Burton, P.T. Roberts (1989): Ozone air quality scoping study for the lower Lake Michigan air quality region. Systems Applications, Inc., Final Report SYSAPP-89/101, San Rafael, California.Google Scholar
  14. Hoke, J.E., and R.A. Anthes (1976): The initialization of numerical models by a dynamic—initialization technique. Mon. Wea. Rev., 104: 1551–1556.CrossRefGoogle Scholar
  15. King, D.S., and S.S. Bunker (1984): Application of atmospheric transport models for complex terrain. J. Climate and Appl. Meteor., 23: 239.CrossRefGoogle Scholar
  16. Lewellen, W.S., R.I. Sykes, S.F. Parker, D.S. Henn, N.L. Seaman, D.R. Stauffer, and T.T. Warner (1989): A hierarchy of dynamic plume models incorporating uncertainty. Vol. 5: Pennsylvania State University Mesoscale Model (PSU—MM). A.R.A.P. Division of California Research - Technology, Inc., Report EA-6095, Vol. 5, Princeton, New Jersey.Google Scholar
  17. Ludwig, F.L., and G. Byrd (1980): An efficient method for deriving mass-consistent flow fields from wind observations in rough terrain. Atmos. Environ., 14: 585–587.CrossRefGoogle Scholar
  18. Mass, C.F., and D.P. Dempsey (1985): A one-level mesoscale model for diagnosing surface winds in mountainous and coastal regions. Mon. Wea. Rev., 110: 1211.CrossRefGoogle Scholar
  19. Moussiopoulos, N., and T. Flassak (1986): Two vectorized algorithms for the effective calculation of mass-consistent flow fields. J. Climate and Appl. Meteor., 25: 847–857.CrossRefGoogle Scholar
  20. Moussiopoulos, N., T. Flassak, and G. Knittel (1988): A refined diagnostic wind model. Environ. Software, 3 (2): 85–94.CrossRefGoogle Scholar
  21. Patnack, P.C., B.E. Freeman, R.M. Traci, and G.T. Phillips (1983): Improved simulations of mesoscale meteorology. Atmospheric Science Laboratory Report ASL CR–83–0127–1. White Sands Missile Range, New Mexico.Google Scholar
  22. Phillips, G.T., and R.M. Traci (1978): A preliminary user guide for the NOABL objective analysis code. Science Applications Inc. Report SAI–78–769–LJ; San Diego, CA. U.S. Department of Energy Report RLO/2440–77–10.Google Scholar
  23. Pielke, R.A., and Y. Mahrer (1978): Verification analysis of the University of Virginia three-dimensional mesoscale model prediction over south Florida for July 1, 1973. Mon. Wea. Rev., 106: 1568–1589.CrossRefGoogle Scholar
  24. Pielke, R.A., R.T. McNider, M. Segal, and Y. Mahrer (1983): The use of a mesoscale numerical model for evaluations of pollutant transport and diffusion in coastal regions and over irregular terrain. Bull. Am. Meteor. Soc., 64: 243–249.Google Scholar
  25. Pielke, R.A. (1984): Mesoscale Meteorological Modeling. Orlando, Florida: Academic Press.Google Scholar
  26. Pielke, R.A. (1988): Status of mesoscale and subregional models. Vol. 2. Aster, Inc., Research Project RP2434–6, Fort Collins, Colorado.Google Scholar
  27. Rodriguez, D.J., et al. (1982): User’s guide to the MATHEW/ADPIC models. UASG 82–16, Lawrence Livermore National Laboratory, University of California Atmospheric and Geophysical Sciences Division, Livermore, California.Google Scholar
  28. Segal, M., and R.A. Pielke (1981): Numerical model simulation of biometeorological heat load conditions—Summer day case study for the Chesapeake Bay area. J. Appl. Meteor., 20: 735–749.CrossRefGoogle Scholar
  29. Seigneur, C. (1988): Evaluation of the feasibility of the application of a regional air pollution model to northern California. Second interim report prepared for Pacific Gas and Electric, San Francisco, California.Google Scholar
  30. Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley.Google Scholar
  31. Sherman, C.A. (1978): A mass-consistent model for wind fields over complex terrain. J. Appl, Meteor., 17: 312–319.Google Scholar
  32. Shir, C.C., and L.J. Shieh (1974): A generalized urban air pollution model and its application to the study of SO2 distributions in the St. Louis metropolitan area. J. Appl. Meteor., 13: 185–204.CrossRefGoogle Scholar
  33. Tapp, M.C., and P.W. White (1976): A nonhydrostatic mesoscale model. Quarterly J.Roy. Meteor. Soc., 102: 277–296.CrossRefGoogle Scholar
  34. Tesche, T.W., and M.A. Yocke (1978): Numerical modeling of wind fields over mountainous regions in California. Proceedings, American Meteorological Society Conference on Sierra Nevada Meteorology, South Lake Tahoe, California, June.Google Scholar
  35. Tran, K.T., and R.C. Sklarew (1979): User guide to IMPACT: An integrated model for plumes and atmospheric chemistry in complex terrain. Form - Substance, Inc., Westlake Village, California.Google Scholar
  36. Yamada, T. (1978): A three—dimensional, second—order closure numerical model of mesoscale circulations in the lower atmosphere. Argonne National Laboratory Document ANL/ RER-78–1. [Available from National Technical Information Service.]Google Scholar
  37. Yamada, T. (1985): Numerical simulation of the Night 2 data of the 1980 ASCOT experiments in the California Geysers Area. Arch. for Meteor., Geophys., and Biolim., A34: 223–247.Google Scholar
  38. Yamada, T., and S.S. Bunker (1988): Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J. Appl. Meteor., 27: 562–578.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations