Skip to main content

Meteorological Modeling

  • Chapter
Air Pollution Modeling
  • 604 Accesses

Abstract

Meteorological models are developed for two purposes:

  • to understand local, regional, or global meteorological phenomena

  • to provide the meteorological input required by air pollution diffusion models

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, G.E. (1971): Mesoscale influences on wind fields. J. Appl. Meteor., 10:377–386.

    Google Scholar 

  • Bornstein, R.D., S. Klotz, R. Street, U. Pechinger, R. Miller (1987): Modeling the polluted coastal urban environment. Vol. 1. The PBL Model. EPRI Report EA-5091, Palo Alto, California.

    Google Scholar 

  • Chang, J.S., R.A. Brost, I.S. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, and C.J. Walcek (1987): A three—dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res., 92: 14681–14700.

    Article  Google Scholar 

  • Clark, T.L. (1977): A small—scale dynamic model using a terrain—following coordinate transformation. J. Comput. Phys., 24: 186–215.

    Article  Google Scholar 

  • Danard, M. (1977): A simple model for mesoscale effects of topography on surface winds. Mon. Wea. Rev., 105: 572.

    Google Scholar 

  • Davis, C.G., S.S. Bunker, and J.P. Mutschlecner (1984): Atmospheric transport models for complex terrain. J. Climate and Appl. Meteor., 23: 235–238.

    Google Scholar 

  • Dickerson, M.H. (1978): MASCON–A mass—consistent atmospheric flux model for regions with complex terrain. J. Appl. Meteor., 17: 241–253.

    Article  Google Scholar 

  • Douglas, S.G., and R.C. Kessler (1988): User’s guide to the diagnostic wind model (Version 1. 0 ). Systems Applications, Inc., San Rafael, California.

    Google Scholar 

  • Fast, J.D., and E.S. Takle (1988): Evaluation of an alternative method for numerically model- ing nonhydrostatic flows over irregular terrain. Boundary—Layer Meteor,44:181–206.

    Google Scholar 

  • Fruehauf, G., P. Halpern, P. Lester (1988): Objective analysis of a two—dimensional scalar field by successive corrections using a personal computer. Environ. Software, 3 (2): 72–80.

    Article  Google Scholar 

  • Geai, P. (1987): Reconstitution tridimensionnelle d’un champ de vent dans un domaine a’ topographie complexe a’ partir de meusures in situ. EDF, Chatou, France, Final Report DER/HE/34–87. 05.

    Google Scholar 

  • Goodin, W.R., G.J. McRae, and J.H. Seinfeld (1980): An objective analysis technique for constructing three—dimensional urban—scale wind fields. J. Appl. Meteor., 19: 98–108.

    Article  Google Scholar 

  • Haney, J.L., S.G. Douglas, L.R. Chinkin, D.R. Souten, C.S. Burton, P.T. Roberts (1989): Ozone air quality scoping study for the lower Lake Michigan air quality region. Systems Applications, Inc., Final Report SYSAPP-89/101, San Rafael, California.

    Google Scholar 

  • Hoke, J.E., and R.A. Anthes (1976): The initialization of numerical models by a dynamic—initialization technique. Mon. Wea. Rev., 104: 1551–1556.

    Article  Google Scholar 

  • King, D.S., and S.S. Bunker (1984): Application of atmospheric transport models for complex terrain. J. Climate and Appl. Meteor., 23: 239.

    Article  Google Scholar 

  • Lewellen, W.S., R.I. Sykes, S.F. Parker, D.S. Henn, N.L. Seaman, D.R. Stauffer, and T.T. Warner (1989): A hierarchy of dynamic plume models incorporating uncertainty. Vol. 5: Pennsylvania State University Mesoscale Model (PSU—MM). A.R.A.P. Division of California Research - Technology, Inc., Report EA-6095, Vol. 5, Princeton, New Jersey.

    Google Scholar 

  • Ludwig, F.L., and G. Byrd (1980): An efficient method for deriving mass-consistent flow fields from wind observations in rough terrain. Atmos. Environ., 14: 585–587.

    Article  Google Scholar 

  • Mass, C.F., and D.P. Dempsey (1985): A one-level mesoscale model for diagnosing surface winds in mountainous and coastal regions. Mon. Wea. Rev., 110: 1211.

    Article  Google Scholar 

  • Moussiopoulos, N., and T. Flassak (1986): Two vectorized algorithms for the effective calculation of mass-consistent flow fields. J. Climate and Appl. Meteor., 25: 847–857.

    Article  Google Scholar 

  • Moussiopoulos, N., T. Flassak, and G. Knittel (1988): A refined diagnostic wind model. Environ. Software, 3 (2): 85–94.

    Article  Google Scholar 

  • Patnack, P.C., B.E. Freeman, R.M. Traci, and G.T. Phillips (1983): Improved simulations of mesoscale meteorology. Atmospheric Science Laboratory Report ASL CR–83–0127–1. White Sands Missile Range, New Mexico.

    Google Scholar 

  • Phillips, G.T., and R.M. Traci (1978): A preliminary user guide for the NOABL objective analysis code. Science Applications Inc. Report SAI–78–769–LJ; San Diego, CA. U.S. Department of Energy Report RLO/2440–77–10.

    Google Scholar 

  • Pielke, R.A., and Y. Mahrer (1978): Verification analysis of the University of Virginia three-dimensional mesoscale model prediction over south Florida for July 1, 1973. Mon. Wea. Rev., 106: 1568–1589.

    Article  Google Scholar 

  • Pielke, R.A., R.T. McNider, M. Segal, and Y. Mahrer (1983): The use of a mesoscale numerical model for evaluations of pollutant transport and diffusion in coastal regions and over irregular terrain. Bull. Am. Meteor. Soc., 64: 243–249.

    Google Scholar 

  • Pielke, R.A. (1984): Mesoscale Meteorological Modeling. Orlando, Florida: Academic Press.

    Google Scholar 

  • Pielke, R.A. (1988): Status of mesoscale and subregional models. Vol. 2. Aster, Inc., Research Project RP2434–6, Fort Collins, Colorado.

    Google Scholar 

  • Rodriguez, D.J., et al. (1982): User’s guide to the MATHEW/ADPIC models. UASG 82–16, Lawrence Livermore National Laboratory, University of California Atmospheric and Geophysical Sciences Division, Livermore, California.

    Google Scholar 

  • Segal, M., and R.A. Pielke (1981): Numerical model simulation of biometeorological heat load conditions—Summer day case study for the Chesapeake Bay area. J. Appl. Meteor., 20: 735–749.

    Article  Google Scholar 

  • Seigneur, C. (1988): Evaluation of the feasibility of the application of a regional air pollution model to northern California. Second interim report prepared for Pacific Gas and Electric, San Francisco, California.

    Google Scholar 

  • Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley.

    Google Scholar 

  • Sherman, C.A. (1978): A mass-consistent model for wind fields over complex terrain. J. Appl, Meteor., 17: 312–319.

    Google Scholar 

  • Shir, C.C., and L.J. Shieh (1974): A generalized urban air pollution model and its application to the study of SO2 distributions in the St. Louis metropolitan area. J. Appl. Meteor., 13: 185–204.

    Article  Google Scholar 

  • Tapp, M.C., and P.W. White (1976): A nonhydrostatic mesoscale model. Quarterly J.Roy. Meteor. Soc., 102: 277–296.

    Article  Google Scholar 

  • Tesche, T.W., and M.A. Yocke (1978): Numerical modeling of wind fields over mountainous regions in California. Proceedings, American Meteorological Society Conference on Sierra Nevada Meteorology, South Lake Tahoe, California, June.

    Google Scholar 

  • Tran, K.T., and R.C. Sklarew (1979): User guide to IMPACT: An integrated model for plumes and atmospheric chemistry in complex terrain. Form - Substance, Inc., Westlake Village, California.

    Google Scholar 

  • Yamada, T. (1978): A three—dimensional, second—order closure numerical model of mesoscale circulations in the lower atmosphere. Argonne National Laboratory Document ANL/ RER-78–1. [Available from National Technical Information Service.]

    Google Scholar 

  • Yamada, T. (1985): Numerical simulation of the Night 2 data of the 1980 ASCOT experiments in the California Geysers Area. Arch. for Meteor., Geophys., and Biolim., A34: 223–247.

    Google Scholar 

  • Yamada, T., and S.S. Bunker (1988): Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J. Appl. Meteor., 27: 562–578.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zannetti, P. (1990). Meteorological Modeling. In: Air Pollution Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4465-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4465-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4467-5

  • Online ISBN: 978-1-4757-4465-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics