Skip to main content

Air Pollution Meteorology

  • Chapter

Abstract

Most air pollution phenomena occur in the lower part of the atmosphere called the planetary boundary layer, or PBL. The PBL (which is sometimes called the friction layer) is defined as “the region in which the atmosphere experiences surface effects through vertical exchanges of momentum, heat and moisture” (Panofsky and Dutton, 1984).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloysius, K.L. (1979): On the determination of boundary-layer parameters using velocity profile as the sole information. Boundary-Layer Meteor., 17: 465 - 484.

    Article  Google Scholar 

  • Businger, J.A. (1966): Transfer of heat and momentum in the atmospheric layer. Prog. Artc. Heat Budget and Atmos. Circulation. Rand Corp., Santa Monica, California, pp. 305 - 332.

    Google Scholar 

  • Businger, J.A., and S.P. Arya (1974): Heights of the mixed layer in the stable, stratified planetary boundary layer. Advances in Geophys., 18A: 73 - 92.

    Article  Google Scholar 

  • Caughey, S.J., and S.G. Palmer (1979): Some aspects of turbulence structure through the depth of the convection boundary layer. Quart. J. Roy. Meteor. Soc., 105: 811 - 827.

    Article  Google Scholar 

  • Caughey, S.J., J.C. Wyngaard, and J.C. Kaimal (1979): Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36: 1041 - 1052.

    Google Scholar 

  • Deardorff, J.W. (1970): Convective velocity and temperature scales for the unstable planetary boundary layer. J. Atmos. Sci., 27: 1211 - 1213.

    Article  Google Scholar 

  • Deardorff, J.W. (1974): Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteor., 7: 81 - 106.

    Google Scholar 

  • Deardorff, J.W., and E.W. Peterson (1980): The boundary-layer growth equation with Reynolds averaging. J. Atmos. Sci., 37: 1405 - 1409.

    Article  Google Scholar 

  • Deardorff, J.W. (1981): Further considerations on the Reynolds average of the kinematic boundary condition. J. Atmos. Sci., 38: 659 - 661.

    Article  Google Scholar 

  • Dobbins, R.A. (1979): Atmospheric Motion and Air Pollution. New York: John Wiley.

    Google Scholar 

  • Garratt, J.R. (1982): Observations in the nocturnal boundary layer. Boundary-Layer Meteor., 22 (1): 21 - 48.

    Article  Google Scholar 

  • Golder, D. (1972): Relations among stability parameters in the surface layer. Boundary-Layer Meteor., 3: 47 - 58.

    Article  Google Scholar 

  • Gryning, S.E., A.A. Holtslag, J.S. Irwin, and B. Sivertsen (1987): Applied dispersion modelling based on meteorological scaling parameters. Atmos. Environ., 21 (1): 79 - 89.

    Article  Google Scholar 

  • Hogstrom, U., and A.S. Hogstrom (1974): Turbulence mechanism at an agricultural site. Boundary-Layer Meteor., 7: 373 - 389.

    Article  Google Scholar 

  • Holtslag, A.A., and F.T. Nieuwstadt (1986): Scaling the atmospheric boundary layer. Boundary-Layer Meteor., 36: 201 - 209.

    Article  Google Scholar 

  • Hunt, J.C., and J.E. Simpson (1982): Atmospheric boundary layers over nonhomogeneous terrain. In Engineering Meteorology, editted by E. Plate, New York: Elsevier, pp. 269 - 318.

    Google Scholar 

  • Irwin, J.S. (1979): Estimating plume dispersion: A recommended generalized scheme. Presented at 4th AMS Symposium on Turbulence and Diffusion, Reno, Nevada.

    Google Scholar 

  • Liu, M.-K., D.R. Durran, P. Mundkur, M. Yocke, and J. James (1976): The chemistry, dispersion, and transport of air pollutants emitted from fossil fuel plants in California: Data analysis and emission impact model. Final report to the Air Resources Board, Contract No. ARB 4 - 258, Sacramento, California.

    Google Scholar 

  • McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982): Mathematical modeling of photochemical air pollution. EQL Report No. 18, Environmental Quality Laboratory, Pasadena, California. Also see:

    Google Scholar 

  • McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982): Development of a second generation mathematical model for urban air pollution, I. Model formulation. Atmos. Environ., 16 (4): 679 - 696.

    Article  Google Scholar 

  • Monin, A.S., and A.M. Obukhov (1954): Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans. Geophys. Inst. Akad., Nauk USSR 151: 163 - 187.

    Google Scholar 

  • Nieuwstadt, F.T. (1978): The computation of the friction velocity U. and the temperature scale T. from temperature and wind velocity profiles by least-squares methods. Boundary-Layer Meteor., 14: 235 - 246.

    Article  Google Scholar 

  • Nieuwstadt, F.T. (1984): The turbulent structure of the stable nocturnal boundary layer. J. Atmos. Sci., 41: 2202 - 2216.

    Article  Google Scholar 

  • Pandolfo, J.O. (1966): Wind and temperature for constant flux boundary layers in lapse conditions with a variable eddy conductivity to eddy viscosity ratio. J. Atmos. Sci., 23: 495 - 502.

    Article  Google Scholar 

  • Panofsky, H.A., H. Tennekes, D.H. Lenscfhow, and J.C. Wyngaard (1977a): The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteor., 11: 355 - 361.

    Article  Google Scholar 

  • Panofsky, H.A., W. Heck, and M.A. Bender (1977b): The effect of clear-air turbulence on a model of the general circulation of the atmosphere. Beitr. Phys. Atmos., 50: 89 - 97.

    Google Scholar 

  • Panofsky, H.A., and J.A. Dutton (1984): Atmospheric Turbulence. New York: John Wiley.

    Google Scholar 

  • Pasquill, F. (1974): Atmospheric Diffusion, 2nd Edition. New York: Halsted Press of John Wiley Sons.

    Google Scholar 

  • Pielke, R.A., and Y. Mahrer (1975): Technique to represent the heated-planetary boundary layer in mesoscale models with coarse vertical resolution. J. Atmos. Sci., 32: 2288 - 2308.

    Article  Google Scholar 

  • Pielke, R.A. (1984): Mesoscale Meteorological Modeling. Orlando, Florida: Academic Press.

    Google Scholar 

  • Sorbjan, Z. (1986): On similarity in the atmospheric boundary layer. Boundary-Layer Meteor., 34: 377 - 397.

    Article  Google Scholar 

  • Sorbjan, Z. (1988): Local similarity in the convection boundary layer (CBL). Boundary-Layer Meteor., 45: 237 - 250.

    Article  Google Scholar 

  • Stern, A.C., R.W. Boubel, D.B. Turner, and D.L. Fox (1984): Fundamentals of Air Pollution. Orlando, Florida: Academic Press.

    Google Scholar 

  • van Ulden, A.P., and A.A. Holtslag (1985): Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate and Appl. Meteor., 24: 1196 - 1207.

    Article  Google Scholar 

  • Venkatram, A. (1980): Estimating the Monin—Obukhov length in the stable boundary layer for dispersion calculations. Boundary-Layer Meteor., 19: 481 - 485.

    Article  Google Scholar 

  • Wilczak, J.M., and M.S. Phillips, (1986): An indirect estimation of convection boundary layer structure for use in pollution dispersion models. J. Climate and Appl. Meteor., 25: 1609 - 1624.

    Article  Google Scholar 

  • Williamson, S.J. (1973): Fundamentals of Air Pollution. Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  • Wyngaard, J.C., O.R. Cote, and K.S. Rao (1974): Modeling the atmospheric boundary layer. Advances in Geophys., 18A: 193 - 211.

    Article  Google Scholar 

  • Wyngaard, J.C., and M.A. LeMone (1980): Behavior of the refractive index structure parameter in the entraining convective boundary layer. J. Atmos. Sci., 37: 1573 - 1585.

    Article  Google Scholar 

  • Zilitinkevich, S.S. (1970): Dynamics of the Atmospheric Boundary Layer. Leningrad: Hydrometerol.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zannetti, P. (1990). Air Pollution Meteorology. In: Air Pollution Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4465-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4465-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4467-5

  • Online ISBN: 978-1-4757-4465-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics