The Tool — Mathematical Modeling

  • Paolo Zannetti


Air quality modeling is an essential tool for most air pollution studies. Models can be divided into
  • physical models — small scale, laboratory representations of the phenomena (e.g., wind tunnel, water tank)

  • mathematical models — a set of analytical/numerical algorithms that describe the physical and chemical aspects of the problem


Electric Power Research Institute Persion Model Electric Power Research Institute Report Numerical Meteorological Model Elevated Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alessio, S., L. Briatore, G. Elisei, and A. Longhetto (183): A laboratory model of wake—affected stack’s emissions. Atmos. Environ., 17: 1139–1143.Google Scholar
  2. Benarie, M.M. (1987): The limits of air pollution modelling. Atmos. Environ., 21:(1)1–5.Google Scholar
  3. Berge, P., Y. Pomeau, and C. Vidal (1984): Order Within Chaos. New York: John Wiley.Google Scholar
  4. Dana, M.T., Ed. (1979): The MAP3S precipitation chemistry network: Second periodic sum- mary report. PNL 2829, Battelle, Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  5. Drake, R.L. (1979): Mathematical models for atmospheric pollutants. Appendix C: Governing equations for atmospheric trace constituents and solution techniques. Electric Power Research Institute Report EA-1131, Palo Alto, California.Google Scholar
  6. Dutton, J.A. (1976): The Ceaseless Wind, an Introduction to the Theory of Atmospheric Motion. New York: McGraw—Hill.Google Scholar
  7. Finlayson—Pitts, B.J., and J.N. Pitts, Jr. (1986): Atmospheric Chemistry. New York: John Wiley.Google Scholar
  8. Goodman, J.K., and A. Miller (1977): Mass transport across a temperature inversion. J. Geographic Res., 82: 3463.Google Scholar
  9. Grebogi, C., E. Ott, and J.A. Yorke (1987): Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science, 238: 632–637.CrossRefGoogle Scholar
  10. Hanna, S.R. (1989): Plume dispersion and concentration fluctuations in the atmosphere. Encyclopedia of Environmental Control Technology. Volume 2, Air Pollution Control. P.N. Cheremisinoff, Editor. Houston, Texas: Gulf Publishing Co.Google Scholar
  11. Lamb, R.G. (1984): Air pollution models as descriptors of cause—effect relationships. Atmos. Environ., 18 (3): 591–606.CrossRefGoogle Scholar
  12. Lewellen, W.S., and R.I. Sykes (1983): Second—order closure model exercise for the Kincaid power plant plume. EPRI report EA-3079, Electric Power Research Institute, Palo Alto, California.Google Scholar
  13. McNaughton, D.J. (1980): Initial comparison of SURE/MAP3S sulfur oxide observations with long—term regional model predictions. Atmos. Environ., 14: 55–63.CrossRefGoogle Scholar
  14. Milian, M., and Y.S. Chung (1977): Detection of a plume 400 km from the source. Atmos. Environ., 11: 939–944.CrossRefGoogle Scholar
  15. Mitsumoto, S., and H. Ueda (1983): A laboratory experiment on the dynamics of the land and sea breeze. J. Atmos. Sci., 40: 1228–1240.CrossRefGoogle Scholar
  16. Nieuwstadt, F.T., and H. van Dop, Eds. (1982): Atmospheric Turbulence and Air Pollution Modeling. Dordrecht, Holland: D. Reidel Publishing Co.Google Scholar
  17. Ottar, B. (1978): An assessment of the OECD study on long—range transport of air pollutants (LRTAP). Atmos. Environ., 12: 445–454.CrossRefGoogle Scholar
  18. Pack, D.H., G.J. Ferber, J.L. Heffter, K. Telegradas, J.K. Angell, W.H. Hoecker, and L. Machta (1978): Meteorology of long—range transport. Atmos. Environ., 12: 425–444.CrossRefGoogle Scholar
  19. Perhac, R.M. (1978): Sulfate regional experiment in the northeastern U.S.: The SURE program. Atmos. Environ., 12: 641–648.CrossRefGoogle Scholar
  20. Pielke, R.A. (1984): Mesoscale Meteorological Modeling. Orlando, Florida: Academic Press.Google Scholar
  21. Policastro, A.J., M. Wastag, L. Coke, R.A. Carhart, and W.E. Dunn (1986): Evaluation of short—term long—range transport models; Volume 1, Analysis, procedures and results. U.S. EPA Document EPA–450/4–86–016a.Google Scholar
  22. Puttock, J.S. (1979): Turbulent diffusion from sources near obstacles with separated wakes. Part II. Concentration measurements near a circular cylinder in uniform flow. Atmos. Environ., 13: 15–22.CrossRefGoogle Scholar
  23. Reynolds, S.D., R.E. Morris, T.C. Myers, and M.—K. Liu (1984a): Evaluation of three first—order closure models - Plains site. EPRI Report EA-3078, Electric Power Research Institute, Palo Alto, California.Google Scholar
  24. Reynolds, S.D., C. Seigneur, T.E. Stoeckenius, G.E. Moore, R.G. Johnson, and R.J. Londergan (1984b): Operational validation of Gaussian plume models at a plains site. EPRI Report EA-3076, Electric Power Research Institute, Palo Alto, California.Google Scholar
  25. Ruff, R.E., K.C. Nitz, F.L. Ludwig, C.M. Bhumralkar, J.D. Shannon, C.M. Sheih, I.Y. Lee, R. Kumar, and D.J. McNaughton (1984): Regional air quality model assessment and evaluation. EPRI report EA-3671, Electric Power Research Institute, Palo Alto, California.Google Scholar
  26. Seinfeld, J.H. (1975): Air Pollution - Physical and Chemical Fundamentals. New York: McGraw—Hill.Google Scholar
  27. Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley.Google Scholar
  28. Willis, G.E., and J.W. Deardorff (1981): A laboratory study of dispersion from a source in the middle of the convectively mixed layer. Atmos. Environ., 15: 109–117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations