Advertisement

Available Computer Packages

  • Paolo Zannetti

Abstract

Many computer programs have been developed for meteorological and air quality simulations. Some of them, generally the simplest, are well documented and relatively easy to use. Most of them, however, require users with good technical skills and, often, the supervision of the developers of the codes.

Keywords

Environmental Protection Agency Dispersion Model Complex Terrain Research Triangle Response Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, P.D., and R.B. Munger (1981): Documentation and User’s Guide to Smog—Simulation Model of Ozone Generation. State of California Air Resources Board, Sacramento, California.Google Scholar
  2. Bencala, K.E., and J.H. Seinfeld (1979): An air quality model performance assessment package. Atmos. Environ., 13: 1111–1185.Google Scholar
  3. Bornstein, R.D., S. Klotz, U. Pechinger, R. Salvador, R. Street, L.J. Shieh, F.L. Ludwig, and R. Miller (1985): Application of linked three-dimensional PBL and dispersion models to New York City. Proceedings, 15th NATO/CCMS Conference, St. Louis, Missouri, April.Google Scholar
  4. Burt, E.W. (1977): Valley Model User’s Guide. Report EPA–450/2–77–018. U.S. Environmental Protection Agency, Office of Air and Waste Management, Research Triangle Park, North Carolina (Addendum PB–274054 of December 1980 ).Google Scholar
  5. Chang, J.S., R.A. Brost, I.S. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, and C.J. Walcek (1987): A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res., 92: 14681–14700.CrossRefGoogle Scholar
  6. Davis, C.G., S.S. Bunker, and J.P. Mutschlecner (1984): Atmospheric transport models for complex terrain. J. Climate and Appl. Meteor., 23: 235–238.CrossRefGoogle Scholar
  7. Dickerson, M.H. (1978): MASCON — A mass—consistent atmospheric flux model for regions with complex terrain. J. Appl. Meteorol., 17: 241–253.CrossRefGoogle Scholar
  8. Dodge, M.C. (1977): Combined use of modeling techniques and smog chamber data to derive ozone–precursor relationships. Proceedings, International Conference on Photochemical Oxidant Pollution and Its Control, Vol. II, edited by B. Dimitriades, U.S. Environmental Protection Agency Document EPA–600/3–77–001b, pp. 881–889.Google Scholar
  9. Douglas, S.G., and R.C. Kessler (1988): User’s guide to the diagnostic wind model (Version 1. 0 ). Systems Applications, Inc., San Rafael, California.Google Scholar
  10. Drivas, P.J., M.W. Chan, and L.G. Wayne (1977): Validation of an improved photochemical air quality simulation model. AMS Joint Conference on Applications of Air Pollution Meteorology. Salt Lake City, Utah, November 23-December 2.Google Scholar
  11. Electric Power Research Institute (1989): Acid rain research results - an environmental briefing - July 1989. EPRI Report EN.3006.7. 89, Electric Power Research Institute, Palo Alto, California.Google Scholar
  12. Eltgroth, M.W., and P.V. Hobbs (1979): Evolution of particles in the plumes of coal-tired power plants–II. A numerical model and comparison with field measurements. Atmos. Environ., 13: 953–976.CrossRefGoogle Scholar
  13. Ermak, D.L., S.T. Chan, D.L. Morgan, and L.K. Morris (1981): A comparison of dense gas dispersion model simulations with Burro series LNG spill test results. Preprint, J. Hazardous Materials, Lawrence Livermore National Laboratory Document CRL-86713, Livermore, California.Google Scholar
  14. Geai, P. (1987): Reconstitution tridimensionnelle d’un champ de vent dans un domaine a’ topographie complexe a’ partir de meusures in situ. EDF, Chatou, France, Final Report DER/HE/34–87. 05.Google Scholar
  15. Gipson, G.L. (1984): User’s manual for OZIPM–2: Ozone isopleth plotting with optional mechanisms/Version 2. U.S. Environmental Protection Agency Document EPA–450/4–84–024, Office of Air Quality Planning and Standards, Monitoring and Data Analysis Division, Research Triangle Park, North Carolina.Google Scholar
  16. Gulfreund, P.D., C.S. Liu, B.R. Nicholson, and E.M. Roberts (1983): COMPLEX I and II model performance evaluation in Nevada and New Mexico. JAPCA, 33 (9): 864–871.Google Scholar
  17. Hanna, S.R., and P.J. Drivas (1987): Guidelines for Use of Vapor Cloud Dispersion Models, New York: Center for Chemical Process Safety, American Society of Chemical Engineers.Google Scholar
  18. Henderson-Sellers, B., (1987): Modeling of plume rise and dispersion - The University of Salford Model: USPR. Lecture Notes in Engineering, edited by C.A. Brebbia and S.A. Orszag. Berlin: Springer-Verlag.Google Scholar
  19. King, D.S., and S.S. Bunker (1984): Application of atmospheric transport models for complex terrain. J. Climate and Appl. Meteor., 23: 239.CrossRefGoogle Scholar
  20. Lange, R. (1978): ADPIC - A three-dimensional particle-in-cell model for the dispersal of atmospheric pollutants and its comparison to regional tracer studies. J. Appl. Meteor., 17: 320.CrossRefGoogle Scholar
  21. Lurmann, F.W., D.A. Gooden, and H.M. Collins, Eds. (1985): User’s guide to the PLMSTAR air quality simulation model. Environmental Research and Technology, Inc. Document M-2206–100, Newbury Park, California.Google Scholar
  22. Martinez, J.R., R.A. Nordsieck, and M.A. Mirschberg (1973): User’s Guide to Diffusion/Kinetics (DIFKIN) Code. General Research Corporation Final Report CR-2=273/1, prepared for U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  23. Nitz, K.C., and R.M. Endlich (1983): ENAMAP-2 User’s Manual. SRI International, Menlo Park, California.Google Scholar
  24. Paine, R.J., and B.A. Egan (1987): User’s Guide to the Rough Terrain Diffusion Model (RTDM) (Rev. 3.20). Document P-D535–585, National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia.Google Scholar
  25. Phillips, G.T., and R.M. Traci (1978): A Preliminary User Guide for the NOABL Objective Analysis Code. SAI Report SAI–78–769–LJ, U.S. Department of Energy Report RLO/2440–77–10. Systems Applications, Inc., La Jolla, California.Google Scholar
  26. Pielke, R.A., R.T. McNider, M. Segal, and Y. Mahrer (1983): The use of a mesoscale numerical model for evaluations of pollutant transport and diffusion in coastal regions and over irregular terrain. Bull. Am. Meteor. Soc., 64: 243–249.CrossRefGoogle Scholar
  27. Pierce, T.E., D.B. Turner, J.A. Catalano, and F.V. Hall III (1982): PTPLU – A Single Source Gaussian Dispersion Algorithm, User’s Guide. Document EPA–600/8–82–014. U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory, Research Triangle Park, North Carolina.Google Scholar
  28. Roth, P.M., P.G. Georgopoulos, T.B. Smith, A.Q. Eschenroeder, J.H. Seinfeld, P.H. Guldberg, and T.C. Spangler (1988): Guidelines for air quality modeling. Draft Report prepared for the State of California Air Resources Board, Sacramento, California.Google Scholar
  29. Sherman, C.A. (1978): A mass—consistent model for wind fields over complex terrain. J. Appl. Meteor., 17: 312–319.CrossRefGoogle Scholar
  30. Seigneur, C., T.W. Tesche, P.M. Roth, M.—K. Liu (1983): On the treatment of point source emissions in urban air quality modeling. Atmos. Environ., 17 (9): 1655–1676.CrossRefGoogle Scholar
  31. Shir, C.C., and L.J. Shieh (1974): A generalized urban air pollution model and its application to the study of SO2 distributions in the St. Louis metropolitan area. J. Appl. Meteor., 13: 185–204.CrossRefGoogle Scholar
  32. Strimaitis, D.G., D.C. DiCristofaro, and T.F. Lavery (1986): The complex terrain dispersion model. EPA Document EPA-600—D-85/220, Atmospheric Sciences Research Laboratory, Research Triangle Park, North Carolina.Google Scholar
  33. Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989a): A hierarchy of dynamic plume models incorporating uncertainty. Vol. 2: Stack exhaust model (SEM). A.R.A.P. Division of California Research and Technology, Inc., Final Report EA-6095, Vol. 2, Princeton, New Jersey.Google Scholar
  34. Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989b): A hierarchy of dynamic plume models incorporating uncertainty. Volume 3: Second—order closure integrated model plume (SCIMP). A.R.A.P. Division of California Research and Technology, Inc., Final Report EA-1616–28, Vol. 3, Princeton, New Jersey.Google Scholar
  35. Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989c): A hierarchy of dynamic plume models incorporating uncertainty. Volume 4: Second—order closure integrated plume. A.R.A.P. Division of California Research and Technology, Inc., Final Report EA-6095, Vol. 4, Princeton, New Jersey.Google Scholar
  36. Systems Applications, Inc. (1984): Visibility and Other Air Quality Benefits of Sulfur Dioxide Emission Controls in the Eastern United States, Volume I. Systems Applications, Inc., Draft Report SYSAPP-84/165, San Rafael, California.Google Scholar
  37. Tesche, T.W.> and D.E. McNalley (1989): A three—dimensional photochemical—aerosol model for episodic and long—term simulation: Formulation and initial application in the Los Angeles Basin. Presented at the annual meeting of the American Chemical Society, Miami Beach, Florida, September.Google Scholar
  38. Tirabassi, T., M. Tagliazucca, and P. Zannetti (1986): KAPPA—G, a non—Gaussian plume dispersion model: Description and evaluation against tracer measurements. JAPCA, 36 (5): 592–596.Google Scholar
  39. Tran, K.T., and R.C. Sklarew (1979): User guide to IMPACT: An integrated model for plumes and atmospheric chemistry in complex terrain. Form and Substance, Inc., Westlake Village, California.Google Scholar
  40. Tran, K.T. (1981): User’s guide for photochemical trajectory model TRACE. Applied Modeling, Inc., Report 81/003. California.Google Scholar
  41. Turner, D.B., L.W. Bender, T.E. Pierce, and W.B Peterson (1989): Air quality simulation models from EPA. Environ. Software, 4 (2): 52.CrossRefGoogle Scholar
  42. U.S. Environmental Protection Agency (1978): Guideline on Air Quality Models. Draft Report EPA–450/2–78–027. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  43. U.S. Environmental Protection Agency (1984): Guideline on Air Quality Models (Revised). Draft Report EPA–450/2–78–027R. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  44. U.S. Environmental Protection Agency (1987): Supplement A to Guideline on Air Quality Models (Revised). Draft Report EPA–450/2–78–027R. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  45. U.S. Environmental Protection Agency (1988a): Screening Procedures for Estimating Air Quality Impact of Stationary Sources. Document 450/4–88/010. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  46. U.S. Environmental Protection Agency (1988b): Workbook for Plume Visual Impact Screening and Analysis. Document 450/4–88/015. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  47. U.S. Environmental Protection Agency (1989): Computer Systems for Chemical Emergency Planning. Chemical Emergency Preparedness and Prevention Technical Assistance Bulletin #5. U.S. EPA Document OSWER-89–005. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  48. Williams, M.D., E. Treiman, and M. Wecksung (1980): Plume blight visibility modeling with a simulated photograph technique. JAPCA, 30: 131–134.Google Scholar
  49. Williams, M.D., L.Y. Chan, and R. Lewis (1981): Validation and sensitivity of a simulated—photograph technique for visibility modeling. Atmos. Environ., 15: 2151–2170.CrossRefGoogle Scholar
  50. Yamada, T. (1978): A three—dimensional, second—order closure numerical model of mesoscale circulations in the lower atmosphere: Description of the basic model and an application to the simulation of the environmental effects of a large cooling pond. Argonne National Laboratory Report ANL/REF-78–1, Argonne, Illinois.Google Scholar
  51. Yamada, T. (1985): Numerical simulation of the Night 2 data of the 1980 ASCOT experiments in the California Geysers Area. Arch. for Meteor., Geophys., and Biolim., A34: 223–247.Google Scholar
  52. Yamada, T., and S. Bunker (1988): Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J. Appl. Meteor., 27: 562–578.CrossRefGoogle Scholar
  53. Yamartino, R.J., J.S. Scire, S.R. Hanna, G.R. Carmichael, Y.S. Chang (1989): CALGRID: A mesoscale photochemical grid model. Sigma Research Corp. Report A049–1. Prepared for the California Air Resources Board, Sacramento, California.Google Scholar
  54. Zannetti, P., J. Moussafir, G. Brusasca, and G. Tinarelli (1988): MC—LAGPAR II User’s Guide (Release 4.0). AeroVironment Report AV—R-88/519, Monrovia, California.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations