Modeling of Adverse Air Quality Effects

  • Paolo Zannetti


Often the real goal of an air pollution study is not only to evaluate the concentration field of atmospheric pollutants, but also to quantify their adverse effects.


Greenhouse Effect Total Ozone Visibility Impairment Stratospheric Ozone Total Ozone Mapper Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agee, E. (1980): Present climatic cooling and a proposed causative mechanism. J. Climate and Appl. Meteor., 61: 1356–1367.Google Scholar
  2. Appel, B.R., Y. Tokiwa, J. Hsu, E.L. Kothny, and E. Hahn (1985): Visibility as related to atmospheric aerosol constituents. Atmos. Environ., 19 (9): 1525–1534CrossRefGoogle Scholar
  3. Bacastow, R.B., C.D. Keeling, and T.P. Whorf (1985): Seasonal amplitude increase in atmospheric CO 2 concentration at Mauna Loa, Hawaii, 1959–1982. J. Geophys. Res., 90:10, 529–10, 540.Google Scholar
  4. Bornstein, R.D. (1986a): Interview of Brian Toon. Environ. Software, 1(3):189. Bornstein, R.D. (1986b): Interview of Alan Robock. Environ. Software, 1 (2): 132.CrossRefGoogle Scholar
  5. Kerr, R.A. (1988): Stratospheric ozone is decreasing. Res. News, Science, 239: 1489–1491.Google Scholar
  6. Cass, G.R. (1979): On the relationship between sulfate in air quality and visibility with examples in Los Angeles. Atmos. Environ., 13: 1069–1084.CrossRefGoogle Scholar
  7. Colbeck, I., and R.M. Harrison (1986): The atmospheric effects of nuclear war — A review. Atmos. Environ., 20 (9): 1673–1681.CrossRefGoogle Scholar
  8. Colbeck, I. (1989): Atmospheric effects of nuclear war. Encyclopedia of Environmental Control Technology. Vol. 2, Air Pollution Control, edited by P.W. Cheremisinoff. Houston, Texas: Gulf Publishing.Google Scholar
  9. Crutzen, P.J., and J.W. Birks (1982): The atmosphere after nuclear war: Twilight at noon. Ambio, 11: 114–125.Google Scholar
  10. Dickinson, R.E., and R.J. Cicerone (1986): Nature, 319: 109.CrossRefGoogle Scholar
  11. Dobbins, R.A. (1979): Atmospheric Motion and Air Pollution. New York: John Wiley and Sons.Google Scholar
  12. Drivas, P.J., A. Bass, and D.W. Heinold (1984): A plume blight visibility model for regulatory use. Atmos. Environ., 15: 2179–2184.Google Scholar
  13. Eltgroth, M.W., and P.V. Hobbs (1979): Evolution of particles in the plumes of coal-fired power plants, II. A numerical model and comparison with field measurements. Atmos. Environ., 13: 953–976.CrossRefGoogle Scholar
  14. Ferman, M.A., G.T. Wolff and N.A. Kelly (1981): The nature and sources of haze in the Shenandoah Valley/Blue Ridge Mountain Area. JAPCA, 31: 1074–1081.Google Scholar
  15. Hansen, J., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, G. Russell, and P. Stone (1988): Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res., 93: 9341–9364.CrossRefGoogle Scholar
  16. Hileman, B. (1984): Recent reports on the greenhouse effect. Environ. Sci. and Technol., 18: 45A - 46A.CrossRefGoogle Scholar
  17. Idso, S.B. (1984): A review of recent reports dealing with the greenhouse effect of atmospheric carbon dioxide. JAPCA, 34: 553–555.Google Scholar
  18. Lal, M., and A.K. Jain (1989): Increasing anthropogenic constituents in the atmosphere and associated climatic changes. Encyclopedia of Environmental Control Technology. Vol. 2, Air Pollution Control, edited by P.W. Cheremisinoff. Houston Texas: Gulf Publishing.Google Scholar
  19. Latimer, D.A., and G.S. Samuelsen (1978): Visual impact of plumes from power plants: A theoretical model. Atmos. Environ., 12: 1455–1465.CrossRefGoogle Scholar
  20. Latimer, D.A., R.W. Bergstrom, C.D. Johnson, and J.P. Killus (1980): Visibility modeling. Paper presented at the American Meteorological Society/Air Pollution Control Association 2nd Joint Conference on Applications of Air Pollution Meteorology, New Orleans, Louisiana, March.Google Scholar
  21. Latimer, D.A., and H. Hogo (1987): The relationship between SO2 emissions and regional visibility in the eastern United States. Proceedings, APCA Specialty Conference “Visibility Protection: Research and Policy Aspects.” Grand Teton National Park, Wyoming, September 1986.Google Scholar
  22. Latimer, D.A., and R.G. Ireson (1988): Workbook for plume visual impact screening and analysis. Systems Applications, Inc., Report SYSAPP-88/121, prepared for the National Park Service and the U.S. Environmental Protection Agency.Google Scholar
  23. Lipfert, F.W. (1985): Environ. Sci. and Technol., 19 (9): 764–770.CrossRefGoogle Scholar
  24. Malone, R.C., L.H. Auer, G.A. Glatzmaier, M.C. Wood, O.B. Toon (1986): Nuclear winter: Three-dimensional simulations including interactive transport, scavenging and solar heating of smoke. J. Geophys. Res., 91: 1039–1053.CrossRefGoogle Scholar
  25. Manabe, S., and R.T. Wetherald (1975): The effects of doubling CO 2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32: 3–15.CrossRefGoogle Scholar
  26. Manabe, S., and R.T. Wetherald (1980): On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J. Atmos. Sci., 37: 99–118.CrossRefGoogle Scholar
  27. McLaughlin, S.B. (1985): Effects of air polution on forests: A critical review. JAPCA, 35 (5): 512–534.Google Scholar
  28. Mercer, J.H. (1978): West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster. Nature, 271: 321–325.CrossRefGoogle Scholar
  29. Mitchell, J.F., and A. Slingo (1988): Climatic effects of nuclear war: The role of atmospheric stability and ground heat fluxes. J. Geophys. Res., 93: 7037–7045.CrossRefGoogle Scholar
  30. NAS (National Academy of Sciences) (1979): Stratospheric ozone depletion by halocarbons: Chemistry and transport. National Reseach Council, Washington, D.C.Google Scholar
  31. Newell, R.E., and T.G. Dopplick (1979): Questions concerning the possible influence of anthropogenic CO2 on atmospheric temperature. J. Appl. Meteor., 18: 822–825.CrossRefGoogle Scholar
  32. Penner, J.E., L.C. Haselman, Jr., and L.L. Edwards (1986): Smoke-plume distributions about large-scale fires: Implications for simulations of “nuclear war.” J. Climate and Appl. Meteor., 25: 1434–1444.CrossRefGoogle Scholar
  33. Pilinis, C. (1989): Numerical simulation of visibility degradation due to particulate matter: Model development and evaluation. J. Geophys. Res., 94 (D7): 9937–9946.CrossRefGoogle Scholar
  34. Poostchi, E., A.W. Gnyp, and C.C. St. Pierre (1986): Comparison of models used for the determination of odor thresholds. Atmos. Environ., 20 (12): 2459–2464.CrossRefGoogle Scholar
  35. Ramanathan, V. (1988): A greenhouse theory of climate change: A test by an inadvertent global experiment. Science, 240: 293CrossRefGoogle Scholar
  36. Rasmussen, R.A., and M.A. Khalil (1986): Science, 232: 1623.CrossRefGoogle Scholar
  37. Reinsel, G., G.C. Tiao, M.N. Wang, R. Lewis, and D. Nychka (1981): Statistical analysis of stratospheric ozone data for the detection of trends. Atmos. Environ., 15: 1569–1577.CrossRefGoogle Scholar
  38. Riches, M.R., and F.A. Koomanoff (1985): Overview of the Department of Energy carbon dioxide research program. J. Climate and Appl. Meteor, 66: 152–158.Google Scholar
  39. Schneider, S.H. (1975): On the carbon dioxide-climate confusion. J. Atmos. Sci., 32: 2060–2066.CrossRefGoogle Scholar
  40. Stern, A.C., Ed. (1977): Air Pollution, 3rd Edition, Volume II. New York: Academic Press. Stern, A.C., Ed. (1986): Air Pollution, 3rd Edition, Volume VI. New York: Academic Press.Google Scholar
  41. Stevens, R.K., T.G. Dzubay, C.W. Lewis, and R.W. Shaw (1984): Source apportionment methods applied to the determination of the origin of ambient aerosols that affect visibility in forested areas. Atmos. Environ., 18: 261–272.CrossRefGoogle Scholar
  42. Systems Applications, Inc. (1984): Visibility and other air quality benefits of sulfur dioxide emission controls in the Eastern United States, Vol. I. SAI Draft Report SYSAPP-84–165, San Rafael, California.Google Scholar
  43. Tang, I.N., W.T. Wong, and H.R. Munkelwitz (1981): The relative importance of atmospheric sulfates and nitrates in visibility reduction. Atmos. Environ., 15 (12): 2463–2471.CrossRefGoogle Scholar
  44. Tombach, I. (1982): Measurement of local climatological and air pollution factors affecting stone decay. From Conservation of Historic Stone Buildings and Monuments. National Academic Press, Washington, DC.Google Scholar
  45. Tombach, I., and D. Allard (1983): Visibility measurement techniques intercomparison in the Eastern United States. AeroVironment Report AV-FR-83/509, Monrovia, California.Google Scholar
  46. Tung, K.K, and H. Yang (1988): Dynamical component of seasonal and year-to-year changes in Antarctic and global ozone. J. Geophys. Res., 93:12, 537–12, 559.Google Scholar
  47. Turco, R., O.B. Toon, T. Ackerman, J.B. Pollack, and C. Sagan (1983): Nuclear winter: Global consequences of multiple nuclear explosions. Science, 222: 1283–1292.CrossRefGoogle Scholar
  48. Weiss, R.W., T.V. Larson, and A.P. Waggoner (1982): In situ rapid-response measurement of H 2 SO 4 /(NH 4 ) 2 SO 4 aerosols in rural Virginia. Environ. Sci. and Technol., 16: 525–532.CrossRefGoogle Scholar
  49. White, W.H. (1984): An intercomparison of plume visibility models with VISTTA observations at the Navajo Generating Station. American Petroleum Institute final report, Washington, D.C.Google Scholar
  50. Williams, M.D., E. Treiman, and M. Wecksung (1980): Plume blight visibility modeling with a simulated photograph technique. JAPCA, 30: 131–134Google Scholar
  51. Williams, M.D., L.Y. Chan, and R. Lewis (1981): Validation and sensitivity of a simulated-photograph technique for visibility modeling. Atmos. Environ., 15: 2151–2170.CrossRefGoogle Scholar
  52. Zannetti, P., I. Tombach, and S. Cvencek (1988): Semiempirical analysis of the visibility improvements from SO2 emission controls in the eastern United States. Proceedings, 81st APCA Annual Meeting. Dallas, Texas. June 19–24.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations