Significance of the Chronobiological Approach in Carrying Out Aging Studies

  • Lawrence E. Scheving
  • John E. Pauly
  • Tien-Hu Tsai
Part of the Advances in experimental medicine and biology book series (AEMB, volume 108)


Chronobiology is the branch of science that explores mechanisms of biological time structure, including important rhythmic manifestations of life.


Circadian Rhythm Circadian Variation Cytosine Arabinoside Senior Citizen Circadian System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartter, F.C. Periodicity and Medicine. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin Ltd., Tokyo, pp 6–13, 1974.Google Scholar
  2. Berson, S.A. and Yalow R.S. Radioimmunoassay of ACTH in plasma. J. Clin. Invest. 47: 2725, 1968.PubMedCrossRefGoogle Scholar
  3. Cornell, A.G., Bardawill, G.J. and David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 117: 751, 1949.Google Scholar
  4. Dunn, J.D., Scheving, L.E. and Millet, P. Circadian variation in stress-evoked increases in plasma corticosterone. Am. J. Physiol. 223: 402–406, 1972.PubMedGoogle Scholar
  5. Dunn, J., Scheving, L.E., Pauly, J.E., Quittner, H. and Tsai, T.H. Effect of aging on the rhythmic pattern in serum corticosterone levels in rat maintained under different environmental lighting conditions. In: XII International Conference Proceedings, International Society for Chronobiology. Publishing House Il Ponte, Milano, pp 211–217, 1977.Google Scholar
  6. Enna, C.C., Scheving, L.E., Halberg, F., Jacobsen, R.R. and Mather, A. A study of circadian rhythms in various parameters in patients with leprosy. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin Ltd., Tokyo, pp 280–284, 1974.Google Scholar
  7. Fisher, L.B. The diurnal mitotic rhythm in the human epidermis. Brit. J. Derm. 80: 75–80, 1968.CrossRefGoogle Scholar
  8. Fiske, C.H. and Sabbarow, Y. The colormetric determination of phosphorus. J. Biol. Chem. 66: 375, 1925.Google Scholar
  9. Guillemin, R., Clayton, G.W., Lipscomb, H.S. and Smith, J.D. Fluorometric measurement of rat plasma and adrenal corticosterone concentration. J. Lab. Clin. Med. 53: 830, 1958.Google Scholar
  10. Halberg, F. and Conner, R.L. Circadian organization and microbiology: Variance spectra and a periodogram on behavior of Escherichia coli growing in a fluid culture. Proc. Minn. Acad. Sci. 29: 227–239, 1961.Google Scholar
  11. Halberg, F., Johnson, F.A., Nelson, W., Runge, W. and Sothern, R. Autorhythmometry — procedures for physiologic self-measurement and their analysis. Physiol. Teacher 1: 1, 1972.Google Scholar
  12. Halberg, F., Lauro, R. and Carandente, F. Autorhythmometry. La Ricerca in Clinica e in Laboratorio 6: 207, 1976.PubMedGoogle Scholar
  13. Haus, E. and Halberg, F. Circannual rhythm in level and timing of serum corticosterone in standardized inbred C-mice. Environmental Res. 3: 75–90, 1970.CrossRefGoogle Scholar
  14. Haus, E., Halberg, F., Scheving, L.E., Pauly, J.E., Cardoso, S.S., Kühl, J.F.W., Sothern, R.B., Shiotsuka, R. and Hwang, D.S. Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science 177: 80–82, 1972.PubMedCrossRefGoogle Scholar
  15. Ho, Kang-Jey Effect of cholesterol feeding on circadian rhythm of hepatic and intestinal cholesterol biosynthesis in hamsters. Proc. Soc. Exp. Biol. Med. 150: 271, 1975.PubMedGoogle Scholar
  16. Kanabrocki, E.L., Scheving, L.E., Halberg, F., Brewer, R.L. and Bird, T.J. Circadian variation in presumably healthy young soldiers. U.S. Dept. Commerce Doc. PB, 228427 p 56, 1974.Google Scholar
  17. Kanabrocki, E.L., Brewer, R.L., Scheving, L.E. and Pauly, J.E. Circadian fluctuation in urinary excretion of calcium and magnesium in presumably healthy young soldiers; effect of meal timing on the serum calcium rhythm. In: XII International Conference Proceedings, International Society for Chonogiology. Publishing House Il Ponte, Milano, pp 29–38, 1977.Google Scholar
  18. Kühl, J.F.W., Haus, E., Halberg, F., Scheving, L.E., Pauly, J.E., Cardoso, S.S. and Rosene, G. Experimental chronotherapy with ara-C; comparison of murine ara-C tolerance on differently timed treatment schedules. Chronobiologia 1: 316–317, 1974.Google Scholar
  19. Lakatua, D.J., Haus, E., Swoyer, J.K., Halberg, E., Thompson, M. and Sackett, L.L. Meal timing shifts circadian rhythms in serum iron and insulin but not in plasma cortisol in human volunteers. Chronobiologia 1: Suppl. 1: 39, 1975.Google Scholar
  20. Levin, H., Johnson, L.R., LaSalle, D.P. and Halberg, F. Autorhythmometry by secondary school students in Connecticut and Minnesota. In: Proc. First World Cong. Environmental Medicine and Biology. Excerpta Media, Paris, 1975 (in press).Google Scholar
  21. Mauer, A.M. Diurnal variation in proliferative activity in the human bone marrow. Blood 26: 1–2, 1965.PubMedGoogle Scholar
  22. Mayersbach, H.V. Seasonal influences on biological rhythms of standardized laboratory animals. In: Cellular Aspects of Biorhythms, H.V. Mayersbach, ed. Springer-Verlag, Heidelberg, pp 87–99, 1967.CrossRefGoogle Scholar
  23. Mayersbach, H.V. Glycogen. In: Encyclopedia of Microscopy and Microtechnique, P. Gray, ed. Von Nostrand Reinhold, New York, pp 213–222, 1973.Google Scholar
  24. McLean, F.C. and Hastings, A.A. Clinical estimation and significance of calcium-ion concentrations in blood. Am. J. Med. Sci. 189: 601, 1935.CrossRefGoogle Scholar
  25. Nelson, W., Scheving, L.E. and Halberg, F. Circadian rhythms in mouse fed a single daily meal at different stages of the lighting regimen. J. Nutr. 105: 171–184, 1975.PubMedGoogle Scholar
  26. Pauly, J.E., Burns, E.R., Halberg, F., Tsai, S., Betterton, H.O. and Scheving, L.E. Meal timing dominates lighting regime as a synchronizer of the eosinophil rhythm in mice. Acta. Anat. 93: 60–68, 1975.PubMedCrossRefGoogle Scholar
  27. Perault-Staub, A.M., Staub, J.F. and Milhaud, G. A new concept of plasma calcium homeostasis in the rat. Endocrinology 96: 480, 1974.CrossRefGoogle Scholar
  28. Philippens, K.M.H., Mayersbach, H.V. and Scheving, L.E. Effects of scheduling meal-feeding at different phases of the circadian system in rats. J. Nutr. 197: 176–193, 1977.Google Scholar
  29. Pincus, G. A diurnal rhythm of the excretion of urinary keto-steroids by young men. J. Clin. Endocrinol. 3: 195, 1943.CrossRefGoogle Scholar
  30. Robertson, W.G., Gallagher, J.C., Marshall, D.H., Peacock, M. and Norden, B.E.C. Seasonal variations in urinary excretion of calcium. Brit. Med. J. 4: 436, 1974.PubMedCrossRefGoogle Scholar
  31. Samis, H.V. Aging: The loss of temporal organization. Persp. Biol. Med. 12: 95, 1968.Google Scholar
  32. Scheving, L.E. Mitotic activity in the human epidermis. Anat. Rec. 135: 7–20, 1959.PubMedCrossRefGoogle Scholar
  33. Scheving, L.E. Chronobiology. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin Ltd., Tokyo, pp 221–223, 1974.Google Scholar
  34. Scheving, L.E. Chronobiology — a temporal dimension in biology and medicine. Endeavour XXXV (No. 125): 66–72, 1976.CrossRefGoogle Scholar
  35. Scheving, L.E. Temporal variation in man. In: Rhythmische Funktionen in Biologischen Systemen Part 1, G. Lassmann and F. Seitelberger, eds. Facultas-Verlag, Wien, pp 49–74, 1977.Google Scholar
  36. Scheving, L.E. and Dunn, J. The cyclic nature of prolactin in mammals. In: Chronobiological Aspects of Endocrinology, J. Aschoff, F. Ceresa and F. Halberg, eds. Symposia Medica Hoechst, Schattauer Verlag, Stuttgart, pp 193–201, 1974.Google Scholar
  37. Scheving, L.E. and Pauly, J.E. Effect of light on corticosterone levels in plasma of rats. Am. J. Physiol. 210: 1112–1117, 1966.PubMedGoogle Scholar
  38. Scheving, L.E. and Pauly, J.E. Circadian phase relationships of thymidine-H3 uptake, labeled nuclei, grain counts and cell division rate in rat corneal epithelium. J. Cell. Biol. 32: 677–783, 1967.PubMedCrossRefGoogle Scholar
  39. Scheving, L.E. and Pauly, J.E. Cellular mechanisms involving biorhythms with emphasis on those rhythms associated with the S and M stages of the cell cycle. Int. J. Chronobiology 1: 269–296, 1973.Google Scholar
  40. Scheving, L.E. and Pauly, J.E. Circadian rhythms: Some examples and comments on clinical applications. Chronobiologia 1: 3–21, 1974.PubMedGoogle Scholar
  41. Scheving, L.E. and Pauly, J.E. Chronopharmacology — its implication for clinical medicine. In: Annual Reports in Medicinal Chemistry, Vol. 11, F.H. Clarke, ed. Academic Press, New York, pp 251–260, 1976.Google Scholar
  42. Scheving, L.E. and Pauly, J.E. Several problems associated with the conduct of chronobiological research. Nova Leopoldina (in press).Google Scholar
  43. Scheving, L.E., Vedral, D.F. and Pauly, J.E. A circadian susceptibility rhythm in rats to pentobarbital sodium. Anat. Rec. 160: 741–750, 1968a.PubMedCrossRefGoogle Scholar
  44. Scheving, L.E., Vedral, D.F. and Pauly, J.E. Daily fluctuation (circadian) in levels of epinephrine in the rat suprarenal gland. Am. J. Physiol. 215: 799–802, 1968b.PubMedGoogle Scholar
  45. Scheving, L.E., Cardoso, S.S., Pauly, J., Halberg, F. and Haus, E. Variations in susceptibility of mice to the carcinostatic agent arabinosyl cytosine. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin Ltd., Tokyo, pp 213–217, 1974a.Google Scholar
  46. Scheving, L.E., Mayersbach, H.V. and Pauly, J.E. An overview of chronopharmacology — a general review. J. Europ. Toxicologie 7: 203–227, 1974b.Google Scholar
  47. Scheving, L.E., Pauly, J.E., Halberg, F., Tsai, T.H. and Betterton, H.O. Lighting regimen dominates interacting meal schedules and synchronizes mitotic rhythms in mouse corneal epithelium. Anat. Rec. 180: 47–52, 1974c.PubMedCrossRefGoogle Scholar
  48. Scheving, L.E., Roig, C., Halberg, F., Pauly, J.E. and Hand, E.A. Circadian time structure in elderly people residing in a “senior citizens” home. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin Ltd., Tokyo, pp 353–357, 1974d.Google Scholar
  49. Scheving, L.E., Haus, E., Kühl, J.F.W., Pauly, J.E., Halberg, F. and Cardoso, S.S. Different laboratories closely reproduce characteristics of circadian rhythm in ara-C tolerance by mice. Cancer Res. 36: 1133–1137, 1976.PubMedGoogle Scholar
  50. Scheving, L.E., Halberg, F. and Kanabrocki, E.L. Circadian rhythmometry on variables of thirteen presumably healthy young men. Chronobiologia (in press).Google Scholar
  51. Simpson, H.W. A new prospective: Chronobiochemistry. Essay Med. Biochem. 2: 115, 1976.Google Scholar
  52. Stone, J.E., Polk, M.L., Tsai, T.H., Pauly, J.E., Burns, E.R. and Scheving, L.E. Circadian variation in urinary excretion of adenosine 3′5′ monophosphate (C-AMP) and guanosine 3′5′ mono-phosphate (G-GMP) in blinded human beings. In: XII International Conference Proceedings, International Society for Chronobiology. Publishing House Il Ponte, Milano, pp 321–326, 1977.Google Scholar
  53. Sturtevant, R.P. Circadian variability in Klebsiella demonstrated by cosinor analysis. Int. J. Chronobiology 1: 141–146, 1973.Google Scholar
  54. Tsai, T.H. Circadian variation in serum cholesterol levels of rat and man: Discussion of the circadian system of living organisms. Formosan Sci. 26: 67–90, 1972.Google Scholar
  55. Tsai, T.H., Scheving, L.E. and Pauly, J.E. Circadian rhythms of plasma inorganic phosphorus and sulfur of the rat. Also in suspectibility to strychnine. Jap. J. Physiol. 20: 12–29, 1970.CrossRefGoogle Scholar
  56. Yunis, E.J., Fernandes, G., Nelson, W. and Halberg, F. Circadian temperature rhythms and aging in rodents. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin Ltd., Tokyo, 358–363, 1974.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Lawrence E. Scheving
    • 1
  • John E. Pauly
    • 1
  • Tien-Hu Tsai
    • 1
  1. 1.Department of AnatomyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations