The Metabolism of Long-Chain Monoenoic Fatty Acids in Heart Muscle and Their Cardiopathogenic Implications

  • Frank D. Sauer
  • John K. G. Kramer


In the past decade, the attention of researchers working in the area of fat metabolism has focused on some possible adverse effects of long-chain unsaturated fatty acids in the diet. The principal sources of these long-chain monoenoic fatty acids are the commonly used vegetable and marine oils. The adverse nutritional effects in laboratory animals that have been associated with a daily high intake of vegetable or marine oils include an accumulation of fat in heart muscle (Abdellatif and Vles, 1970; Conacher et al., 1973; Teige and Beare-Rogers, 1973), myocarditis and myocardial focal necrosis (Roine et al., 1960), and even a possible increase in the incidence of intestinal and mammary tumors in laboratory animals (Enig et al., 1978).


Erucic Acid Heart Mitochondrion Erucic Acid Content Myocardial Lesion Monoenoic Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdellatif, A. M. M., and Vies, R. 0., 1970, Pathological effects of dietary rapeseed oil in rats, Nutr. Metab. 12: 285.Google Scholar
  2. Abdellatif, A. M. M., and Vles, R. O., 1973a, Short-term and long-term pathological effects of glyceryl trierucate and of increasing levels of dietary rapeseed oil in rats, Nutr. Metab. 15: 219.CrossRefGoogle Scholar
  3. Abdellatif, A. M. M., and Vles, R. O., 1973b, Pathological effects of dietary rapeseed oils with high or low erucic acid content in ducklings, Pauli. Sci. 52: 1932.CrossRefGoogle Scholar
  4. Ackman, R. G., 1966, Analysis of the monoethylenic fatty acids of rapeseed oil by open tubular gas chromatography, J. Am. Oil Chem. Soc. 43: 483.CrossRefGoogle Scholar
  5. Ackman, R. G., 1974, Marine lipids and fatty acids in human nutrition, in Fishery Products ( R. Kreuzer, ed.), pp. 112 - 131, The Whitefriars Press, London.Google Scholar
  6. Ackman, R. G., and Castell, J. D., 1966, Isomeric monoethylenic fatty acids in herring oil, Lipids 1: 341.CrossRefGoogle Scholar
  7. Ackman, R. G., and Loew, F. M., 1977, The effects of high levels of fats rich in erucic acid (from rapeseed oil) or cetoleic and cetelaidic acids (from partially hydrogenated fish oil) in a short-term study in a non-human primate species, Fette, Seifen, Anstrichm. 79: 15, 58.CrossRefGoogle Scholar
  8. Ackman, R. G., Epstein, S., and Eaton, C. A., 1971, Differences in the fatty acid compositions of blubber fats from northwestern Atlantic finwhales (Balaenoptera physalus) and harp seals (Pagophilus groenlandica), Comp. Biochem. Physiol. 40B: 683.Google Scholar
  9. Ackman, R. G., Hooper, S. N., and Hooper, D. L., 1974, Linolenic acid artifacts from the deodorization of oils, J. Am. Oil Chem. Soc. 51: 42.CrossRefGoogle Scholar
  10. Aherne, F. X., Bowland, J. P., Christian, R. G., Vogtmann, H., and Hardin, R. T., 1975, Performance and histological changes in tissues of pigs fed diets containing high or low erucic acid rapeseed oils or soybean oil, Can. J. Anim. Sci. 55: 77.CrossRefGoogle Scholar
  11. Aherne, F. X., Bowland, J. P., Christian, R. G., and Hardin, R. T., 1976, Performance of myocardial and blood serai changes in pigs fed diets containing high or low erucic acid rapeseed oils, Can. J. Anim. Sci. 56: 275.CrossRefGoogle Scholar
  12. Beare-Rogers, J. L., 1975, The effect of dietary rapeseed oil on cardiac tissue, in Modification of Lipid Metabolism ( E. G. Perkins and L. A. Witting, eds.), pp. 43 - 57. Academic Press, New York.Google Scholar
  13. Beare-Rogers, J. L., and Gordon, E., 1976, Myocardial lipids and nucleotides of rats fed olive oil or rapeseed oil, Lipids 11: 287.CrossRefGoogle Scholar
  14. Beare-Rogers, J. L., and Nera, E. A., 1972, Cardiac fatty acids and histopathology of rats, pigs, monkeys and gerbils fed rapeseed oil, Comp. Biochem. Physiol. 41B: 793.Google Scholar
  15. Beare-Rogers, J. L., and Nera, E. A., 1977, Nutritional effects of partially hydrogenated low erucic rapeseed oils, Lipids 12: 769.CrossRefGoogle Scholar
  16. Beare-Rogers, J. L., Nera, E. A., and Heggtveit, H. A., 1971, Cardiac lipid changes in rats fed oils containing long-chain fatty acids, Can. Inst. Food Technol. J. 4: 120.Google Scholar
  17. Beare-Rogers, J. L., Nera, E. A., and Craig, B. M., 1972a, Accumulation of cardiac fatty acids in rats fed synthesized oils containing C22 fatty acids, Lipids 7: 46.CrossRefGoogle Scholar
  18. Beare-Rogers, J. L., Nera, E. A., and Craig, B. M., 1972b, Cardiac lipids in rats and gerbils fed oils containing C22 fatty acids, Lipids 7: 548.CrossRefGoogle Scholar
  19. Beare-Rogers, J. L., Nera, E. A., and Heggtveit, H. A., 1974, Myocardial alteration in rats fed rapeseed oils containing high or low levels of erucic acid, Nutr. Metab. 17: 213.CrossRefGoogle Scholar
  20. Blomstrand, R., and Svensson, L., 1974, Studies on phospholipids with particular reference to cardiolipin of rat heart after feeding rapeseed oil, Lipids 9: 771.CrossRefGoogle Scholar
  21. Borensztajn, J., Rone, M. S., and Kotlar, T. J., 1976, The inhibition in vivo of lipoprotein lipase (clearing-factor lipase) activity by triton, WR-1339, Biochem. J. 156: 539.Google Scholar
  22. Brockerhoff, H., and Yurkowski, M., 1966, Stereospecific analyses of several vegetable fats, J. Lipid Res. 7: 62.Google Scholar
  23. Buddecke, E., Filipovic, I., Wortberg, B., and Seher, A., 1976, Wirkungsmechanismus langkettiger Monoenfettsäuren in Energiestoffwechsel des Herzens, Fette, Seifen, Anstrichm. 78: 196.CrossRefGoogle Scholar
  24. Carroll, K. K., 1965, Dietary fat and the fatty acid composition of tissue lipids, J. Am. Oil Chem. Soc. 42: 516.Google Scholar
  25. Carroll, K. K., 1966, Metabolism of C-labeled oleic acid, erucic acid and nervonic acid in rats, Lipids 1: 171.CrossRefGoogle Scholar
  26. Charlton, K. M., Corner, A. H., Davey, K., Kramer, J. K. G., Mahadevan, S., and Sauer, F. D., 1975, Cardiac lesions in rats fed rapeseed oils, Can. J. Comp. Med. 39: 261.Google Scholar
  27. Cheng, C. K., and Pande, S. V., 1975, Erucic acid metabolism by rat heart preparations, Lipids 10: 335.CrossRefGoogle Scholar
  28. Christiansen, R. Z., Christophersen, B. O., and Bremer, J., 1977, Monoethylenic C20 and C22 fatty acids in marine oil and rapeseed oil. Studies on their oxidation and on their relative ability to inhibit palmitate oxidation in heart and liver mitochondria, Biochim. Biophys. Acta 487: 28.CrossRefGoogle Scholar
  29. Christiansen, R. Z., Christiansen, E. N., and Bremer, J., 1979, The stimulation of erucate metabolism in isolated rat hepatocytes by rapeseed oil and hydrogenated marine oil-containing diets, Biochim. Biophys. Act 573: 417.CrossRefGoogle Scholar
  30. Christophersen, B. O., and Bremer, J., 1972, Erucic acid—an inhibitor of fatty acid oxidation in the heart, Biochim. Biophys. Acta 280: 506.CrossRefGoogle Scholar
  31. Christophersen, B. O., and Christiansen, R. Z., 1975, Studies on the mechanism of the inhibitory effects of erucylcarnitine in rat heart mitochondria, Biochim. Biophys. Acta 388: 402.CrossRefGoogle Scholar
  32. Clandinin, M., 1976, Fatty acid composition changes in mitochondrial membranes induced by dietary long chain fatty acids, FEBS Lett. 68: 41.CrossRefGoogle Scholar
  33. Conacher, H. B. S., and Page, B. D., 1972, Studies on the isomers of major monoenoic acids in rapeseed and partially hydrogenated rapeseed oil, J. Am. Oil Chem. Soc. 49: 283.CrossRefGoogle Scholar
  34. Conacher, H. B. S., Page, B. D., and Chadha, R. K., 1972, Isomers of monoethylenic fatty acids in some partially hydrogenated marine oils, J. Am. Oil Chem. Soc. 49: 520.CrossRefGoogle Scholar
  35. Conacher, H. B. S., Page, B. D., and Beare-Rogers, J. L., 1973, Monoethylenic isomers in cardiac lipids of rats fed partially hydrogenated herring oil, Lipids 8: 256.CrossRefGoogle Scholar
  36. Cornelius, J. A., 1977, Palm oil and palm kernel oil, in Progress in the Chemistry of Fats and Other Lipids ( R. T. Holman, ed.), pp. 5 - 27, Pergamon, Oxford.Google Scholar
  37. Craig, B. M., 1961, Varietal and environmental effects on rapeseed. III. Fatty acid composition of 1958 varietal tests, Can. J. Plant Sci. 41: 204.CrossRefGoogle Scholar
  38. Craig, B. M., and Beare-Rogers, J. L., 1967, The ß-oxidative degradation of docosenoic acids to eicosenoic and octadecenoic acids in the rat, Can. J. Biochem. 45: 1075.CrossRefGoogle Scholar
  39. Davidoff, F., and Korn, E. D., 1965, The reactions of trans-a, ß-hexadecenoyl coenzyme A and cis-and trans-ß, y-hexadecenoyl coenzyme A catalyzed by enzymes from guinea pig liver mitochondria, J. Biol. Chem. 240: 1549.Google Scholar
  40. Dewailly, P., Sezille, G., Nouvelot, A., Fruchart, J. C., and Jaillard, J., 1977, Changes in rat heart phospholipid composition after rapeseed oil feeding, Lipids 12: 301.CrossRefGoogle Scholar
  41. Dewailly, P., Nouvelot, A., Sezille, G., Fruchart, J. C., and Jaillard, J., 1978, Changes in fatty acid composition of cardiac mitochondrial phospholipids in rats fed rapeseed oil, Lipids 13: 301.CrossRefGoogle Scholar
  42. Downey, R. K., 1964, A selection of Brassica campestris L. containing no erucic acid in its seed oil, Can. J. Plant Sci. 44: 295.CrossRefGoogle Scholar
  43. Downey, R. K., 1976, Tailoring rapeseed and other oilseed crops to the market, Chem. and Ind. (London) May 1: 401.Google Scholar
  44. Downey, R. K., and Craig, B. M., 1964, Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.), J. Am. Oil Chem. Soc. 41: 475.CrossRefGoogle Scholar
  45. Downey, R. K., Craig, B. M., and Youngs, C. G., 1969, Breeding rapeseed for oil and meal quality, J. Am. Oil Chem. Soc. 46: 121.CrossRefGoogle Scholar
  46. Dow-Walsh, D. S., Mahadevan, S., Kramer, J. K. G., and Sauer, F. D., 1975, Failure of dietary erucic acid to impair oxidative capacity or ATP production of rat heart mitochondria isolated under controlled conditions, Biochim. Biophys. Acta 396: 125.CrossRefGoogle Scholar
  47. Engfeldt, B., and Brunius, E., 1975, Morphological effects of rapeseed oil in rats. I. Short-term studies, Acta Med. Scand. (Suppl.) 585: 15.Google Scholar
  48. Enig, M. G., Munn, R. J., and Keeney, M., 1978, Dietary fat and cancer trends—a critique, Fed. Proc. 37: 2215.Google Scholar
  49. Friend, D. W., Corner, A. H., Kramer, J. K. G., Charlton, K. M., Gilka, F., and Sauer, F. D., 1975a, Growth, cardiopathology and cardiac fatty acids of swine fed diets containing soybean oil or low erucic acid rapeseed oil, Can. J. Anim. Sci. 55: 49.CrossRefGoogle Scholar
  50. Friend, D. W., Gilka, F., and Corner, A. H., 1975b, Growth, carcass quality and cardiopathology of boars and gilts fed diets containing rapeseed and soybean oils, Can. J. Anim. Sci. 55: 571.CrossRefGoogle Scholar
  51. Friend, D. W., Kramer, J. K. G., and Corner, A. H., 1976, Growth and cardiopathology in boars fed rapeseed oil, Can. J. Anim. Sci. 56: 361.CrossRefGoogle Scholar
  52. Garland, P. B., and Randle, P. J., 1964, Regulation of glucose uptake by muscle, Biochem. J. 93: 678.Google Scholar
  53. Garland, P. B., Shepherd, D., and Yates, D. W., 1965, Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate, Biochem. J. 97: 587.Google Scholar
  54. Gopalan, C., Krishnamurthi, D., Shenolikar, I. S., and Krishnamachari, K. A. V. R., 1974, Myocardial changes in monkeys fed mustard oil, Nutr. Metab. 16: 352.CrossRefGoogle Scholar
  55. Gudbjarnason, S., and Hallgrimsson, J., 1976, The role of myocardial membrane lipids in the development of cardiac necrosis, Acta Med. Scand. (Suppl.) 587: 17.Google Scholar
  56. Gumpen, S. A., and Norum, K. R., 1973, The relative amounts of long-chain acylcarnitines, short-chain acylcarnitines and carnitine in heart, liver and brown adipose tissue from rats fed on rapeseed oil, Biochim. Biophys. Acta 316: 48.CrossRefGoogle Scholar
  57. Haeffner, E. W., 1970, Isolation and structural determination of the C20 and C22 unsaturated fatty acids of rapeseed oil, Lipids 5: 430.CrossRefGoogle Scholar
  58. Hay, J. D., and Morrison, W. R., 1970, Isomeric monoenoic fatty acids in bovine milk fat, Biochim. Biophys. Acta 202: 237.CrossRefGoogle Scholar
  59. Heijkenskjöld, L., and Ernster, L., 1975, Studies on the mode of action of erucic acid on heart metabolism, Acta Med. Scand. (Suppl.) 585: 75.Google Scholar
  60. Houtsmuller, U. M. T., Struijk, C. B., and Van der Beek, A., 1970, Decrease in rate of ATP synthesis of isolated rat heart mitochondria induced by dietary erucic acid, Biochim. Biophys. Acta 218: 564.CrossRefGoogle Scholar
  61. Hulan, H. W., Kramer, J. K. G., Mahadevan, S., Sauer, F. D., and Corner, A. H., 1976, Relationship between erucic acid and myocardial changes in male rats, Lipids 11: 9.CrossRefGoogle Scholar
  62. Hulan, H. W., Kramer, J. K. G., and Corner, A. H., 1977a, The effect of dietary fatty acid balance on myocardial lesions in male rats, Lipids 12: 951.CrossRefGoogle Scholar
  63. Hulan, H. W., Kramer, J. K. G., and Corner, A. H., 1977b, Myocardial lesions in rats fed rapeseed oil. I. Influence of strain of rats, Can. J. Physiol. Pharmacol. 55: 258.CrossRefGoogle Scholar
  64. Hulan, H. W., Thompson, B., Kramer, J. K. G., Sauer, F. D., and Corner, A. H., 1977c, An evaluation of the incidence of heart lesions in rats fed rapeseed oil, Can. Inst. Food Sci. Technol. J. 10: 23.Google Scholar
  65. Hung, S., and Holub, B. J., 1977, Effect of high-erucate rapeseed oil on lipid synthesis in rat heart, Nutr. Rep. Int. 15: 71.Google Scholar
  66. Idell-Wenger, J. A., Grotyohann, L. W., and Neely, J. R., 1978, Coenzyme A and carnitine distribution in normal and ischemic hearts, J. Biol. Chem. 253: 4310.Google Scholar
  67. Kerbey, A. L., Randle, P. J., Cooper, R. H., Whitehouse, S., Pask, H. T., and Denton, R. M., 1976, Regulation of pyruvate dehydogenase in rat heart, Biochem. J. 154: 327.Google Scholar
  68. Kishimoto, Y., and Radin, N. S., 1963, Biosynthesis of nervonic acid and its homologues from carboxyl-labeled oleic acid, J. Lipid Res. 4: 444.Google Scholar
  69. Korsrud, G. O., Conacher, H. B. S., Jarvis, G. A., and Beare-Rogers, J. L., 1977, Studies on long chain cis-and trans-acyl-CoA esters and acyl-CoA dehydrogenase from rat heart mitochondria, Lipids 12: 177.CrossRefGoogle Scholar
  70. Kramer, J. K. G., and Hulan, H. W., 1977, Changes in the acyl and alkenyl group composition of cardiac phospholipids in boars fed corn oil or rapeseed oil, Lipids 12: 159.CrossRefGoogle Scholar
  71. Kramer, J. K. G., and Hulan, H. W., 1978, The effects of dietary erucic acid on cardiac triglycerides and free fatty acid levels in rats, Lipids 13: 438.CrossRefGoogle Scholar
  72. Kramer, J. K. G., Mahadevan, S., Hunt, J. R., Sauer, F. D., Corner, A. H., and Charlton, K. M., 1973, Growth rate, lipid composition, metabolism and myocardial lesions of rats fed rapeseed oils (Brassica campestris var. Arlo, Echo and Span, and B. napus var. Oro), J. Nutr. 103: 1696.Google Scholar
  73. Kramer, J. K. G., Friend, D. W., and Hulan, H. W., 1975a, Lipid changes in tissues of young boars fed rapeseed oil or corn oil, Nutr. Metab. 19: 279.CrossRefGoogle Scholar
  74. Kramer, J. K. G., Hulan, H. W., Mahadevan, S., and Sauer, F. D., 1975b, Brassica campestris var. Span: I. Fractionation of rapeseed oil by molecular distillation and adsorption chromatography, Lipids 10: 505.Google Scholar
  75. Kramer, J. K. G., Hulan, H. W., Mahadevan, S., Sauer, F. D., and Corner, A. H., 1975c, Brassica campestris var. Span: II. Cardiopathogenicity of fractions isolated from Span rapeseed oil when fed to male rats, Lipids 10: 511.Google Scholar
  76. Kramer, J. K. G., Hulan, H. W., Procter, B. G., Rona, G., Mandavia, M. G., 1978, Evaluation of low erucic acid rapeseed oil fed to monkeys: Cardiac lipids, histochemistry and pathology, Can. J. Anim. Sci. 58: 257.CrossRefGoogle Scholar
  77. Kramer, J. K. G., Hulan, H. W., Trenholm, H. L., and Corner, A. H., 1979, Growth, lipid metabolism and pathology of two strains of rats fed high fat diets, J. Nutr. 109: 202.Google Scholar
  78. Kuemmel, D. F., 1964, Minor component fatty acids of common vegetable oils, J. Am. Oil Chem. Soc. 41: 667.Google Scholar
  79. Lall, S. P., Pass, D., and Slinger, S. J., 1972, Effect of high and low erucic acid rapeseed oil on biochemical and histopathological changes in heart muscle of chickens, Poult. Sci. 51: 1828.Google Scholar
  80. Lambertsen, G., Myklestad, H., and Braekkan, O. R., 1971, Studies on monoene fatty acid isomers in hydrogenated fish oils, J. Am. Oil Chem. Soc. 48: 389.CrossRefGoogle Scholar
  81. Lawhon, J. T., Cater, C. M., and Mattil, K. F., 1977, Evaluation of the food use potential of sixteen varieties of cottenseed, J. Am. Oil Chem. Soc. 54: 75.CrossRefGoogle Scholar
  82. Lazarow, P. B., and De Duve, C., 1976, A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug, Proc. Natl. Acad. Sci. 73: 2043.CrossRefGoogle Scholar
  83. Linn, T. C., Pettit, F. H., and Reed, L. J., 1969, a-Keto acid dehydrogenase complexes. X. regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation, Proc. Natl. Acad. Sci. 62: 234.Google Scholar
  84. Litchfield, C., 1971, The a,ß-distribution of oleic, linoleic and linolenic acids in cruciferae seed triglycerides, J. Am. Oil Chem. Soc. 48: 467.CrossRefGoogle Scholar
  85. Mahadevan, S., Malaiyandi, M., Erfle, J. D., and Sauer, F. D., 1970, Metabolism of L-carnitine esters of 0-substituted palmitic acid by rat liver mitochondria, J. Biol. Chem. 245: 3218.Google Scholar
  86. McCutcheon, J. S., Umemura, T., Bhatnagar, M. K., and Walker, B. L., 1976, Cardiopathogenicity of rapeseed oils and oil blends differing in erucic, linoleic and linolenic acid content, Lipids 11: 545.CrossRefGoogle Scholar
  87. Newsholme, E. A., Randle, P. J., and Manchester, K. L., 1962, Inhibition of the phosphofructokinase reaction in perfused rat heart by respiration of ketone bodies, fatty acids and pyruvate, Nature 193: 270.CrossRefGoogle Scholar
  88. Norseth, J., and Christophersen, B. 0., 1978, Chain shortening of erucic acid in isolated liver cells, FEBS Lett. 88: 353.Google Scholar
  89. Ohlson, R., 1972, Production of and trade in rapeseed, in Rapeseed ( L. A. Appelqvist and R. Ohlson, eds.), pp. 9 - 35, Elsevier, Amsterdam.Google Scholar
  90. Ohlson, R., Podlaha, O., and Töreg$rd, B., 1975, Stereospecific analysis of some cruciferae species, Lipids 10: 732.CrossRefGoogle Scholar
  91. Oram, J. F., Bennetch, S. L., and Neely, J. R., 1973, Regulation of fatty acid utilization in isolated perfused rat hearts, J. Biol. Chem. 248: 5299.Google Scholar
  92. Osmundsen, H., and Bremer, J., 1978, Comparative biochemistry of ß-oxidation. An investigation into the abilities of isolated heart mitochondria of various animal species to oxidize long-chain fatty acids, including the C22:1 monoenes, Biochem. J. 174: 379.Google Scholar
  93. Pande, S. V., 1975, A mitochondrial carnitine acylcamitine translocase system, Proc. Natl. Acad. Sci. 72: 883.CrossRefGoogle Scholar
  94. Pande, S. V., and Parvin, R., 1976, Characterization of carnitine acylcarnitine translocase system of heart mitochondria, J. Biol. Chem. 251: 6683.Google Scholar
  95. Pascal, J. C., and Ackman, R. G., 1976, Long chain monoethylenic alcohol and acid isomers in lipids of copepods and capelin, Chem. Phys. Lipids 16: 219.CrossRefGoogle Scholar
  96. Pinson, A., and Padieu, P., 1974, Erucic acid oxidation be beating heart cells in culture, FEBS Lett. 39: 88.CrossRefGoogle Scholar
  97. Rabinowitz, J. L., Hercker, E. S., 1974, Incomplete oxidation of palmitate and leakage of intermediary products during anoxia, Arch. Biochem. Biophys. 161: 621.CrossRefGoogle Scholar
  98. Randle, P. J., England, P. J., and Denton, R. M., 1970, Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart, Biochem. J. 117: 677.Google Scholar
  99. Rocquelin, G., 1973, Effets a très court terme de l’huile de colza sur les lipides cardiaques et hépatiques du rat sevré: Influence du raffinage et de l’intérestérification, Ann. Biol. Anim. Biochim. Biophys. 13: 151.Google Scholar
  100. Rocquelin, G., and Cluzan, R., 1968, L’huile de colza riche en acide érucique et l’huile de colza sans acide érucique: Valeur nutritionnelle et effets physiologiques chez le rat, Ann. Biol. Anim. Biochim. Biophys. 8: 395.CrossRefGoogle Scholar
  101. Rocquelin, G., Sergiel, J. P., Astorg, P. O., and Cluzan, R., 1973, Effets des huiles de colza et de canbra sur les lipides et l’anatomie du myocarde du rat: Étude a court terme (de 0 a 60 jours), Ann. Biol. Anim. Biochim. Biophys. 13: 587.CrossRefGoogle Scholar
  102. Roine, P. Uksila, E., Teir, H., and Rapola, J., 1960, Histopathological changes in rats and pigs fed rapeseed oil, Z. Ernährungswiss. 1: 118.CrossRefGoogle Scholar
  103. Sauer, F. D., 1974, Nutritional properties of Brassica campestris var. Span and its fractions when fed to rats and swine, Proceedings Internat. Rapskongres, Giessen, 4: 725.Google Scholar
  104. Shafrir, E., Gatt, S., and Khasis, S., 1965, Partition of fatty acids of 20-24 carbon atoms between serum albumin and lipoproteins, Biochim. Biophys. Acta 98: 365.CrossRefGoogle Scholar
  105. Stefansson, B. R., and Kondra, Z. P., 1975, Tower summer rape, Can. J. Plant Sci. 55: 343.CrossRefGoogle Scholar
  106. Stefansson, B. R., Hougen, F. W., and Downey, R. K., 1961, Note on the isolation of rape plants with seed oil free from erucic acid, Can. J. Plant Sci. 41: 218.CrossRefGoogle Scholar
  107. Stewart, H. B., Tubbs, P. K., and Stanley, K. K., 1973, Intermediates of fatty acid oxidation, Biochem. J. 132: 61.Google Scholar
  108. Swarttouw, M. A., 1974, The oxidation of erucic acid by rat heart mitochondria, Biochim. Biophys. Acta 337: 13.CrossRefGoogle Scholar
  109. Teige, B., and Beare-Rogers, J. L., 1973, Cardiac fatty acids in rats fed marine oils, Lipids 8: 584.CrossRefGoogle Scholar
  110. Trenholm, H. L., Thompson, B. K., and Kramer, J. K. G., 1979, An evaluation of the relationship of dietary fatty acids to incidence of myocardial lesions in male rats, Can. Inst. Food Sci. Technol. J. 12: 189.Google Scholar
  111. Vies, R. 0., 1975, Nutritional aspects of rapeseed oil, in The Role of Fats in Human Nutrition ( A. J. Vergroesen, ed.), pp. 433 - 477, Academic Press, New York.Google Scholar
  112. Vies, R. 0., Bijster, G. M., Kleinekoort, J. S. W., Timmer, W. G., and Zaalberg, J., 1976, Nutritional status of low-erucic acid rapeseed oils, Fette, Seifen, Anstrichm. 78: 128.Google Scholar
  113. Vodovar, N., Desnoyers, F., Levillain, R., and Cluzan, R., 1973, Accumulation lipidique térations cellulaires du myocarde des porcs ayant reçu de l’huile de colza dans leur régime. Etude ultrastructurale, C.R. Acad. Sci. 276D: 1597.Google Scholar
  114. Wakil, S. J., 1961, Mechanism of fatty acid synthesis, J. Lipid Res. 2: 1.Google Scholar
  115. Wieland, 0., Funcke, H., and Löffler, G., 1971, Interconversion of pyruvate dehydrogenase in rat heart muscle upon perfusion with fatty acids or ketone bodies, FEBS Lett. 15: 295.CrossRefGoogle Scholar
  116. Williamson, J. R., 1962, Effects of insulin and diet on the metabolism of L(+)-lactate and glucose by the perfused rat heart, Biochem. J. 83: 377.Google Scholar
  117. Williamson, J. R., 1964, Effects of insulin and starvation on the metabolism of acetate and pyruvate by the perfused rat heart, Biochem. J. 93: 97.Google Scholar
  118. Williamson, J. R., and Krebs, H. A., 1961, Acetoacetate as fuel of respiration in the perfused rat heart, Biochem. J. 80: 540.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Frank D. Sauer
    • 1
  • John K. G. Kramer
    • 1
  1. 1.Research Branch, Animal Research InstituteAgriculture CanadaOttawaCanada

Personalised recommendations