Advertisement

Protein in the Nutrition of the Preterm Infant

Biochemical and Nutritional Considerations
  • Niels C. R. Räihä

Abstract

Recent medical advances have resulted in improved care for the mother and fetus during preterm labor and delivery, and of the premature infant during the neonatal period. As a consequence, perinatal mortality rates have decreased hand in hand with the frequency of severe neurological residues. The most important goal of the obstetrician and the neonatologist of today is the improvement of the quality of survival, since learning problems and high incidence of slightly impaired intellectual performance and low IQ scores are still fairly common in studies of long-term outcome of low-birth-weight infants.

Keywords

Preterm Infant Breast Milk Human Milk Human Fetus Maternal Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Academy of Pediatrics, Committee on Nutrition, 1977, Nutritional needs of low-birthweight infants, Pediatrics 60: 519.Google Scholar
  2. Andersson, S. M., Ohisalo, J. J., and Räihä, N. C. R., 1980, Tyrosine aminotransferase in the human fetus, Development. Physiol. (in press).Google Scholar
  3. Atkinson, S. A., Bryan, M. H., and Anderson, G. H., 1978, Human milk: Differences in nitrogen concentration in milk from mothers of term and premature infants, J. Pediatr. 93: 67.CrossRefGoogle Scholar
  4. Babson, S. G., and Bramhall, J. L., 1969, Diet and growth in the premature infant, J. Pediatr. 74: 890.CrossRefGoogle Scholar
  5. Ballard, R. A., Vinocur, B., Reynolds, J., Kane, W., Nyhan, W., and Sweetman L., 1977, Coma due to transient hyperammonemia in the preterm infant, Pediatr. Res. (Abstract) 11: 510.Google Scholar
  6. Batshaw, M. L., and Brusilow, S.W., 1978, Asymptomatic hyperammonemia in low birthweight infants, Pediatr. Res. 12: 221.CrossRefGoogle Scholar
  7. Bessman, S. P., 1972, Genetic failure of fetal amino acid “justification.” A common basis for many forms of metabolic, nutritional and “unspecific” mental retardation, J. Pediatr. 81: 832.Google Scholar
  8. Blaxter, K. L., 1964, Protein metabolism and requirements in pregnancy and lactation, in Mammalian Protein Metabolism ( H. N. Munro and J. B. Allison, ed.), pp. 173–223, Academic Press, New York.Google Scholar
  9. Brown, G. W., and Cohen, P. P., 1959, Comparative biochemistry of urea synthesis. I. Methods for the quantitative assay of urea cycle enzymes in liver, J. Biol. Chem. 234: 1769.Google Scholar
  10. Colombo, J. P., and Richterer, R., 1968, Urea cycle enzymes in the developing human fetus, Enzymol. Biol. Clin. 9: 68.Google Scholar
  11. Davidson, M., Levine, S. Z., Bauer, C. H., and Dann, M., 1967, Feeding studies in low birth weight infants, J. Pediatr. 70: 695.CrossRefGoogle Scholar
  12. Delvalle, J. A., and Greengard, 0., 1977, Phenylalanine hydroxylase and tyrosine aminotransferase in human fetal and adult liver, Pediatr. Res. 11: 2.CrossRefGoogle Scholar
  13. Dobbing, J., 1974, Later development of the brain and its vulnerability, in Scientific Foundations of Paediatrics (J. A. Davis and J. Dobbing, eds.), pp. 565–577, William Heinemann, London. Fomon, S. J., and Filer, L. J., 1974, Milks and formulas, in Infant Nutrition ( S. J. Fomon, ed.), pp. 359–407, W. B. Saunders, Philadelphia.Google Scholar
  14. Friedman, P. A., and Kaufman, S., 1971, A study of the development of phenylalanine hydroxylase in fetuses of several mammalian species, Arch. Biochem. Biophys. 146: 321.CrossRefGoogle Scholar
  15. Gaull, G. E., 1973, Sulfur amino acids, folate and DNA: Metabolic interrelationships during foetal development, in Foetal and Neonatal Medicine (Sir Joseph Barcroft Centenary Symposium), pp. 339–341, Cambridge University Press, Cambridge.Google Scholar
  16. Gaull, G. E., Sturman, J. A., and Räihä, N. C. R., 1972, Development of mammalian sulfur metabolism: absence of cystathionase in human fetal liver, Pediatr. Res. 6: 538.CrossRefGoogle Scholar
  17. Gault, G. E., Räihä, N. C. R., Saarikoski, S., and Sturman, J. A., 1973a, Transfer of cyst(e)ine and methionine across the human placenta, Pediatr. Res. 7: 908.CrossRefGoogle Scholar
  18. Gaull, G. E., von Berg, W., Räihä, N. C. R., and Sturman, J. A., 1973b, Development of methyltransferase activities of human fetal tissues, Pediatr. Res. 7: 527.CrossRefGoogle Scholar
  19. Gaull, G. E., Rassin, D. K., Räihä, N. C. R., and Heinonen, K., 1977a, Milk protein quantity and quality in low-birth-weight infants. III. Effects on sulfur amino acids in plasma and urine, J. Pediatr. 90: 348.CrossRefGoogle Scholar
  20. Gault, G. E., Rassin, D. K., and Räihä, N. C. R., 1977b, Protein intake of premature infants: A reply, J. Pediatr. 90: 507.CrossRefGoogle Scholar
  21. Gaull, G. E., Cohen, S. R., Rassin, D. K., Chiou, B. L., Heinonen, K., and Räihä, N. C. R., 1978, Milk protein quantity and quality: Effects on organic acids in low birth weight infants,(LBWI), Pediatr. Res. (Abstract), 12: 434.Google Scholar
  22. Ghadimi, H., and Pecora, P., 1964, Free amino acids of cord plasma as compared with maternal plasma during pregnancy, Pediatrics 33:500. 204 Niels C. R. RäihäGoogle Scholar
  23. Ghisalberti, A. B., 1976, Enzyme induction in perinatal rat liver, Academic Dissertation, University of Western Australia, pp. 1–127.Google Scholar
  24. Goldman, H. I., Goldman, J. S., Kaufman, I., and Liebman, O. B., 1974, Late effects of early dietary protein intake in low-birth-weight infants, J. Pediatr. 85: 764.CrossRefGoogle Scholar
  25. Gordon, H. H., Levine, S. Z., and McNamara, H., 1947, Feeding of premature infants: A comparison of human and cow’s milk, Am. J. Dis. Child. 73: 442.Google Scholar
  26. Goswami, M. N., and Knox, W. E., 1961, Developmental changes of phydroxyphenylpyruvateoxidase activity in mammalian liver. Biochim. Biophys. Acta 50: 35.Google Scholar
  27. Greengard, 0., 1977, Enzymic differentiation of human liver: Comparison with the rat model, Pediatr. Res. 11: 669.Google Scholar
  28. Gresham, E. L., Simons, P. S., and Battaglia, F. C., 1971, Maternal fetal urea concentration differences in man, J. Pediatr. 79: 809.CrossRefGoogle Scholar
  29. Hambraeus, L., 1977, Proprietary milk versus human breast milk in infant feeding, Pediatr. Clin. North Am. 24: 17.Google Scholar
  30. Hayes, K. C., Carey, R. E., and Schmidt, S. Y., 1975, Retinal degeneration associated with taurine deficiency in the cat, Science 188: 949.CrossRefGoogle Scholar
  31. Heird, W. C., Nicholson, J. F., Driscoll, J. M., Schullinger, J. N., and Winters, R. W., 1972, Hyperammonemia resulting from intravenous alimentation using a mixture of synthetic L-amino acids; A preliminary report, J. Pediatr. 81: 162.CrossRefGoogle Scholar
  32. Jakubovic, A., 1971, Phenylalanine hydroxylating system in the human fetus at different developmental ages, Biochim. Biophys. Acta 237: 469.Google Scholar
  33. Järvenpää, A. L., Räihä, N. C. R., Kuitunen, P., Rassin, D., and Gaull, G., 1980, Effect of taurine supplementation to the diet on bile acid conjugation in low birth-weight infants (LBWI), Pediatr. Res. 14: 177 (abstract).CrossRefGoogle Scholar
  34. Johnson, J. D., Albritton, W. L., and Sunshine, P., 1972, Hyperammonemia accompanying par-enteral nutrition in newborn infants, J. Pediatr. 81: 154.CrossRefGoogle Scholar
  35. Kaufman, S., 1971, The phenylalanine hydroxylating system from mammalian liver, Adv. Enzymol. 35: 245.Google Scholar
  36. Kennan, A. L., and Cohen, P. P., 1961, Ammonia detoxication in liver from humans, Proc. Soc. Exp. Biol. Med. 106: 170.Google Scholar
  37. Kenney, F. T., and Kretchmer, N., 1959, Hepatic metabolism of phenylalanine during development, J. Clin. Invest. 38: 2189.Google Scholar
  38. Kopelman, A. E., 1978, The smallest preterm infants, Am. J. Dis. Child. 132: 461.Google Scholar
  39. Krebs, H. A., Hems, R., and Lund, P., 1973, Some regulatory mechanisms in the synthesis of urea in the mammalian liver, Adv. Enzyme Regul. 11: 361.CrossRefGoogle Scholar
  40. Kretchmer, N., 1959, Enzymatic patterns during development: An approach to a biochemical definition of immaturity, Pediatrics 23: 606.Google Scholar
  41. Kretchmer, N., Levine, S. Z., and McNamara, H., 1957, The in vitro metabolism of tyrosine and its intermediates in the liver of the premature infant, Am. J. Dis. Child. 93: 19.Google Scholar
  42. Leung, P. M. B., and Rogers, Q. R., 1975, Disturbances in amino acid balance, in Total Parenteral Nutrition ( H. Ghadimi, ed.), pp. 259–284, John Wiley and Sons, New York.Google Scholar
  43. Levine, S. Z., Marples, E., and Gordon, H. H., 1941, A defect in the metabolism of tyrosine and phenylalanine in premature infants. I. Identification and assay of intermediary products, J. Clin. Invest. 20: 199.CrossRefGoogle Scholar
  44. Lindblad, B. S., 1971, The plasma aminogram in small for dates newborn infants, in Metabolic Processes in the Foetus and Newborn Infant ( J. H. P. Jonxis, H. K. A. Visser, and J. A. Troelstra, eds.), pp. 111–126, H.E. Stenfert Kroese N.V., Leiden.CrossRefGoogle Scholar
  45. Lindblad, B. S., Alfvén, G., and Zetterström, R., 1978, Plasma free amino acid concentrations of breast-fed infants, Acta Paediatr. Scand. 67: 659.CrossRefGoogle Scholar
  46. Lönnerdal, B., Forsum, E., and Hambraeus, L., 1976, The protein content of human milk. I. A transversal study of Swedish normal material, Nutr. Rep. Int. 13: 125.Google Scholar
  47. Mamunes, P., Prince, P. E., Thornton, N. H., Hunt, P. S., and Hitchcock, E. S., 1976, Intellectual deficits after transient tyrosinemia in the term neonate, Pediatrics 57: 675.Google Scholar
  48. Menkes, J. H., and Avery, M. E., 1963, The metabolism of phenylalanine and tyrosine in the premature infant, Bull. John Hopkins Hosp. 113: 301.Google Scholar
  49. Menkes, J. H., Welcher, D. W., Leir, H. S., Dallas, J., and Gretsky, N. E., 1972, Relationship of elevated blood tyrosine and ultimate intellectual performance of premature infants, Pediatrics 49: 218.Google Scholar
  50. Mestyân, J., Soltész, Gy., Schultz, K., and Horvath, M., 1975, Hyperaminoacidemia due to accumulation of gluconeogenic amino acid precursors in hypoglycemic small-for-gestation age infants, J. Pediatr 87: 409.CrossRefGoogle Scholar
  51. Ohisalo, J. J., and Räihä, N. C. R., 1978, unpublished observations.Google Scholar
  52. Omans, W. B., Barness, L. A., Rose, C. S., and György, P., 1961, Prolonged feeding studies in premature infants, J. Pediatr. 59: 951.CrossRefGoogle Scholar
  53. Pascal, T. A., Gillam, B. M., and Gaull, G. E., 1972, Cystathionase: Immunochemical evidence for absence from human fetal liver, Pediatr. Res. 6: 773.CrossRefGoogle Scholar
  54. Pencharz, P. B., Cochran, W., Scrimshaw, N. S., and Young, V. R., 1977, Protein metabolism in human neonates: I. Nitrogen balance studies and estimated obligatory N losses, Clin. Sci. Mol. Med. 52: 485.Google Scholar
  55. Polani, P. E., 1974, Chromosomal and other genetic influences on birth weight variations, in Size at Birth, Ciba Foundation Symposium 27, pp. 127–164, Associated Scientific Publishers, Amsterdam.Google Scholar
  56. Räihä, N. C. R., 1973, Phenylalanine hydroxylase in human liver during development, Pediatr. Res. 7: 1.CrossRefGoogle Scholar
  57. Räihä, N. C. R., 1974, Biochemical basis for nutritional management of preterm infants, Pediatrics 53: 147.Google Scholar
  58. Räihä, N. C. R., and Kekomäki, M. P., 1968, Studies on the development of ornithine-keto acid aminotransferase activity in rat liver, Biochem. J. 108: 521.Google Scholar
  59. Räihä, N. C. R., and Kekomäki, M., 1978, Development of the ornithine-urea cycle, in Perinatal Physiology ( U. Stave, ed.), pp. 547–553, Plenum Press, New York.CrossRefGoogle Scholar
  60. Räihä, N. C. R., and Suihkonen, J., 1968, Development of urea synthesizing enzymes in human liver, Acta Paediatr. Scand. 57: 121.CrossRefGoogle Scholar
  61. Räihä, N. C. R., Schwartz, A. L., and Lindroos, M. C., 1971, Induction of tyrosine-a-ketoglutarate transaminase in fetal rat and fetal human liver in organ culture, Pediatr. Res. 5: 70.CrossRefGoogle Scholar
  62. Räihä, N. C. R., Heinonen, K., Rassin, D. K., and Gaull, G. E., 1976, Milk protein quantity and quality in low-birthweight infants: I. Metabolic responses and effects on growth, Pediatrics 57: 659.Google Scholar
  63. Rassin, D. K., Gaull, G. E., Heinonen, K., and Räihä, N. C. R., 1977a, Milk protein quantity and quality in low-birth-weight infants: II. Effect on selected aliphatic amino acids in plasma and urine, Pediatrica 59: 407.Google Scholar
  64. Rassin, D. K., Gaull, G. E., Räihä, N. C. R., and Heinonen, K., 1977b, Milk protein quantity and quality in low-birth-weight infants: IV. Effects on tyrosine and phenylalanine in plasma and urine, J. Pediatr. 90: 356.CrossRefGoogle Scholar
  65. Rassin, D. K., Sturman, J. A., and Gaull, G. E., 1978, Taurine and other free amino acids in milk of man and other mammals, Early Hum. Del,. 2 (1): 1.CrossRefGoogle Scholar
  66. Rigo, J., and Senterre, J., 1977, Is taurine essential for the neonate?, Biol. Neonat. 32: 73.CrossRefGoogle Scholar
  67. Ryan, W. L., and Carver, M. J., 1966, Free amino acids in human foetal and adult liver, Nature 212: 292.CrossRefGoogle Scholar
  68. Ryan, W. L., and Orr, W., 1966, Phenylalanine conversion to tyrosine by human fetal liver, Arch. Biochem. Biophys. 113: 684.CrossRefGoogle Scholar
  69. Smith, R. M., Jarrett, I. G., King, R. A., and Russell, G. R., 1977, Amino acid nutrition of the fetal lamb, Biol. Neonat. 31: 305.Google Scholar
  70. Snyderman, S. E., 1971, The protein and amino acid requirements of the premature infant, in Metabolic Processes in the Foetus and Newborn Infant ( J. H. P. Jonxis, H. K. A. Visser, and J. A. Troelstra, eds.), pp. 128–141, H. E. Stenfert Kroese N. V., Leiden.CrossRefGoogle Scholar
  71. Snyderman, S. E., 1978, Protein and amino acid metabolism, in Perinatal Physiology ( U. Stawe, ed.), pp. 383–395, Plenum Press, New York.CrossRefGoogle Scholar
  72. Snyderman, S. E., Boyer, A., Kought, M.D., and Holt, L. E., 1969, The protein requirement of the premature infant. I. The effect of protein intake on the retention of nitrogen, J. Pediatr. 74: 872.Google Scholar
  73. Southgate, D. A. T., 1971, The accumulation of amino acids in the products of conception of the rat and in the young animal after birth, Biol. Neonate. 19: 272.CrossRefGoogle Scholar
  74. Sturman, J. A., and Gaull, G. E., 1976, Taurine in the brain and liver of the developing human and rhesus monkey, in Taurine ( R. Huxtable and A. Burbeau, eds.), pp. 73–84, Raven Press, New York.Google Scholar
  75. Sturman, J. A., Gaull, G. E., and Räihä, N. C. R., 1975, DNA synthesis from the /3-carbon of serine by fetal and mature human liver, Biol. Neonat. 27: 17.Google Scholar
  76. Teoh, E. S., Lau, Y. K., Ambrose, A., and Ratman, S. S., 1973, Amniotic fluid creatinine, uric acid acid and urea as indices of gestation age, Acta Obstet. Gynecol. Scand. 52: 323.Google Scholar
  77. Waisman, H. A., and Kerr, G. R., 1965, Amino acid and protein metabolism in the developing fetus and the newborn infant, Pediatr. Clin. of North Am. 12: 551.Google Scholar
  78. Widdowson, E. M., 1969, How the fetus is fed. Proc. Nutr. Soc. 28: 17.Google Scholar
  79. Widdowson, E. M., 1974, Nutrition, in Scientific Foundations of Paediatrics ( J. A. Davis, and J. Dobbing, eds.), pp. 44–55, William Heinemann, London.Google Scholar
  80. Williams, H. H., Vurtin, L. V., Abraham, J., Loosli, J. K., and Maynard, L. A., 1954, Estimations of growth requirements for amino acids by assay of the carcass, J. Biol. Chem. 208: 277.Google Scholar
  81. Young, M., 1976, The accumulation of protein by the fetus, in Fetal Physiology and Medicine R. W. Beard, and P. W. Nathanielsz, eds.), pp. 59–79, W. B. Saunders, London.Google Scholar
  82. Young, M., and Prenton, M.A., 1969, Maternal and fetal plasma amino acid concentrations during gestation and in retarded fetal growth, J. Obstet. Gynaecol. Br. Commonw. 76: 333.CrossRefGoogle Scholar
  83. Young, W. F., Poyner-Wall, P., Humphreys, H. C., Finch, E., and Broadbent, I., 1950, Protein requirements of infants. 3. The nutrition of premature infants, Arch. Dis. Child. 25: 31.CrossRefGoogle Scholar
  84. Zannoni, V. G., and LaDu, B. N., 1959, The tyrosine oxidation system of liver. IV. Studies on the inhibition of p-hydroxyphenylpyruvic acid oxidase by excess substrate, J. Biol. Chem. 234: 2925.Google Scholar
  85. Ziegler, E. E., O’Donnell, A. M., Nelson, S. E., and Fomon, S. J., 1976, Body composition of the reference fetus, Growth, 40: 329.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Niels C. R. Räihä
    • 1
  1. 1.Department of Pediatrics in MalmöUniversity of LundMalmöSweden

Personalised recommendations