Advertisement

Evidence of the Essentiality of Arsenic, Nickel, and Vanadium and Their Possible Nutritional Significance

  • Forrest H. Nielsen

Abstract

Since 1970, a number of reports have suggested that several elements present in minute quantities in animal tissues are essential nutrients. These trace elements include arsenic, cadmium, fluoride, lead, nickel, silicon, tin, and vanadium. Findings which suggest that cadmium, lead, and tin are essential have come from one laboratory (Schwarz and Spallholz, 1976; Schwarz, 1974; Schwarz et al., 1970) and have not been confirmed by another laboratory. Because growth in suboptimally growing rats was the main criterion for demonstrating the essentiality of cadmium, lead, and tin, perhaps the findings were a demonstration of the Arndt—Schultz law: subharmful doses of any harmful agent may stimulate organisms that are in a suboptimal condition (Luckey, 1978). For a while it was thought that fluoride was necessary for normal hematocrits, fertility, and growth in mice and rats (Messer et al., 1972a, 1972b, 1973; Schwarz and Milne, 1972). However, it was suggested that fluoride may have been acting on those parameters by pharmacological, not physiological, mechanisms (Nielsen, 1976), and recent findings which show that high dietary fluoride can improve iron utilization in a diet marginally sufficient in iron support this suggestion (Tao and Suttie, 1976; Wegner et al., 1976). The essentiality of silicon appears to be established, and the nutritional and metabolic significance of silicon have been reviewed (Carlisle, 1975). In this chapter, the evidence for the essentiality of arsenic, nickel, and vanadium will be reviewed and the possible nutritional significance of these elements will be discussed.

Keywords

Basal Diet Skim Milk Powder Dietary Iron Nutritional Significance Trace Element Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anke, M., Grün, M., Dittrich, G., Groppel, B., and Hennig, A., 1974, Low nickel rations for growth and reproduction in pigs, in Trace Element Metabolism in Animals-2 ( W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 715–718, University Park Press, Baltimore.Google Scholar
  2. Anke, M., Grün, M., and Partschefeld, M., 1976, The essentiality of arsenic for animals, Trace Subst. Environ. Health 10: 403.Google Scholar
  3. Anke, M., Hennig, A., Grün, M., Partschefeld, M., Groppel, B., and Lüdke, H., 1977, Nickel-ein essentielles Spurenelement, Arch. Tierernährung 27: 25.CrossRefGoogle Scholar
  4. Anke, M., Grün, M., Partschefeld, M., Groppel, B., and Hennig, A., 1978, Essentiality and function of arsenic, in Trace Element Metabolism in Man and Animals-3 ( M. Kirchgessner, ed.), pp. 248–252, Universität München, Freising-Weihenstephan.Google Scholar
  5. Berg, L. R., 1966, Effect of diet composition on vanadium toxicity for the chick, Poult. Sci. 45: 1346.CrossRefGoogle Scholar
  6. Berg, L. R., and Lawrence, W. W., 1971, Cottonseed meal, dehydrated grass and ascorbic acid as dietary factors preventing toxicity of vanadium for the chick, Pauli. Sci. 50: 1399.CrossRefGoogle Scholar
  7. Carlisle, E. M., 1975, Silicon, Nutr. Rev. 33: 257.CrossRefGoogle Scholar
  8. Christensen, O. B., and Möller, H., 1975, External and internal exposure to the antigen in the hand eczema of nickel allergy, Contact Dermatitis 1: 136.CrossRefGoogle Scholar
  9. Frost, D. V., 1975, Is selenium depletion the answer to the “arsenic cancer” mystery? Feedstuffs 47: 20.Google Scholar
  10. Frost, D. V., 1978, The arsenic problems, in Inorganic and Nutritional Aspects of Cancer ( G. N. Schrauzer, ed.), pp. 259–279, Plenum Press, New York.CrossRefGoogle Scholar
  11. Hathcock, J. N., Hill, C. H., and Matrone, B., 1964, Vanadium toxicity and distribution in chicks and rats, J. Nutr. 82: 106.Google Scholar
  12. Hill, C. H., 1976, Mineral interrelationships, in Trace Elements in Human Health and Disease-2 ( A. S. Prasad, ed.), pp. 281–300, Academic Press, New York.Google Scholar
  13. Hopkins, L. L., Jr., and Mohr, H. E., 1971a, The biological essentiality of vanadium, in Newer Trace Elements in Nutrition ( W. Mertz and W. E. Cornatzer, eds.), pp. 195–213, Marcel Dekker, Inc., New York.Google Scholar
  14. Hopkins, L. L., Jr., and Mohr, H. E., 197 lb, Effect of vanadium deficiency on plasma cholesterol of chicks, Fed. Proc. 30: 462.Google Scholar
  15. Hopkins, L. L., Jr., and Mohr, H. E., 1974, Vanadium as an essential nutrient, Fed. Proc. 33:1773.Google Scholar
  16. Hove, E., Elvehjem, C. A., and Hart, E. B., 1938, Arsenic in the nutrition of the rat, Am. J. Physiol. 124: 205.Google Scholar
  17. Kirchgessner, M., and Schnegg, A., 1976, Malate dehydrogenase and glucose-6-phosphate dehydrogenase activity in livers of Ni-deficient rats, Bioinorg. Chem. 6: 155.CrossRefGoogle Scholar
  18. Levander, O. A., Albert, R. E., Boutwell, R. K., Buck, W. B., Calabrese, A., Calvert, C. C., Crafts, A. S., Feldman, C., Fleischer, M., Irgolic, K. S., Kearny, P. C., Moore, L., Peoples, S. A., Soares, J. H., Jr., Wacker, W. E. C., Windhorst, D. B., Woolson, E. A., and Zingaro, R. A., 1977, Arsenic, National Research Council, National Academy of Sciences, Washington, D.C.Google Scholar
  19. Luckey, T. D., 1978, Prelude to the industrial use of dietary antibotics, Fed. Proc. 37: 107.Google Scholar
  20. Messer, H. H., Armstrong, W. D., and Singer, L., 1972a, Fertility impairment in mice on a low fluoride diet, Science 177: 893.CrossRefGoogle Scholar
  21. Messer, H. H., Wong, K., Wagner, M., Singer, L., and Armstrong, W. D., 1972b, Effect of reduced fluoride intake by mice on haematocrit values, Nature (London) New Biol. 240: 218.Google Scholar
  22. Messer, H. H., Armstrong, W. D., and Singer, L., 1973, Influence of fluoride intake on reproduction in mice, J. Nutr. 103: 1319.Google Scholar
  23. Murthy, G. K., Rhea, U. S., and Peeler, J. T., 1973, Levels of copper, nickel, rubidium, and strontium in institutional total diets, Environ. Sci. Technol. 7: 1042.CrossRefGoogle Scholar
  24. Myron, D. R., Givand, S. H., Hopkins, L. L., Jr., and Nielsen, F. H., 1975, Studies on vanadium deficiency in the rat, Fed. Proc. 34: 923.Google Scholar
  25. Myron, D. R., Givand, S. H., and Nielsen, F. H., 1977, Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy, J. Agric. Food Chem. 25: 297.CrossRefGoogle Scholar
  26. Myron, D. R., Zimmerman, T. J., Shuler, T. R., Klevay, L. M., Lee, D. E., and Nielsen, F. H., 1978, Intake of nickel and vanadium by humans. A survey of selected diets, Am. J. Clin. Nutr. 31: 527.Google Scholar
  27. Nielsen, F. H., 1970, Symptoms of nickel deficiency in the chick, Fed. Proc. 29: 696.Google Scholar
  28. Nielsen, F. H., 1971, Studies on the essentiality of nickel, in Newer Trace Elements in Nutrition ( W. Mertz and W. E. Cornatzer, eds.), pp. 215–253, Marcel Dekker, New York.Google Scholar
  29. Nielson, F. H., 1974a, “Newer” trace elements in human nutrition, Food Tech. 28:38.Google Scholar
  30. Nielsen, F. H., 1974b, Essentiality and function of nickel, in Trace Element Metabolism in Animals-2 ( W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 381–395, University Park Press, Baltimore.Google Scholar
  31. Nielsen, F. H., 1976, Newer trace elements and possible application in man, in Trace Elements in Human Health and Disease-2 ( A. S. Prasad, ed.), pp. 379–399, Academic Press, New York.Google Scholar
  32. Nielsen, F. H., and Higgs, D. J., 1971, Further studies involving a nickel deficiency in chicks, Trace Subst. Environ. Health 4: 241.Google Scholar
  33. Nielsen, F. H., and Ollerich, D. A., 1973, Studies on a vanadium deficiency in chicks, Fed. Proc. 32: 929.Google Scholar
  34. Nielsen, F. H., and Ollerich, D. A., 1974, Nickel: A new essential trace element, Fed. Proc. 33: 1767.Google Scholar
  35. Nielsen, F. H., and Sauberlich, H. E., 1970, Evidence of a possible requirement for nickel by the chick, Proc. Soc. Exp. Biol. Med. 134: 845.Google Scholar
  36. Nielsen, F. H., and Shuler, T. R., 1978, Arsenic deprivation studies in chicks, Fed. Proc. 37: 893.Google Scholar
  37. Nielsen, F. H., Ollerich, D. A., Fosmire, G. J., and Sandstead, H. H., 1974a, Nickel deficiency in chicks and rats: Effects on liver morphology, function, and polysomal integrity, in Protein-Metal Interactions—Advances in Experimental Medicine and Biology ( M. Friedman, ed.), pp. 389–403, Plenum Press, New York.CrossRefGoogle Scholar
  38. Nielsen, F. H., Myron, D. R., Sutcliffe, G. M., Fosmire, M. A., and Givand, S. H., 1974b, Nickel deficiency in rats, Fed. Proc. 33: 703.Google Scholar
  39. Nielsen, F. H., Givand, S. H., and Myron, D. R., 1975a, Evidence of a possible requirement for arsenic by the rat, Fed. Proc. 34: 923.Google Scholar
  40. Nielsen, F. H., Myron, D. R., Givand, S. H., and Ollerich, D. A., 1975b, Nickel deficiency and nickel-rhodium interaction in chicks, J. Nutr. 105: 1607.Google Scholar
  41. Nielsen, F. H., Myron, D. R., Givand, S. H., Zimmerman, T. J., and Ollerich, D. A., 1975c, Nickel deficiency in rats, J. Nutr. 105: 1620.Google Scholar
  42. Nielsen, F. H., Myron, D. R., and Uthus, E. O., 1978a, Newer trace elements—vanadium (V) and arsenic (As) deficiency signs and possible metabolic roles, in Trace Element Metabolism in Man and Animals-3 ( M. Kirchgessner, ed.), pp. 244–247, Universität München, FreisingWeihenstephan.Google Scholar
  43. Nielsen, F. H., Zimmerman, T. J., Collings, M. E., and Myron, D. R., 1978b, Nickel deprivation in rats: Nickel-iron interactions, Presented at the XIth Internat. Congress of Nutrition, Rio de Janiero, Brazil, August, 1978.Google Scholar
  44. Sandstead, H. H., 1973, Zinc nutrition in the United States, Am. J. Clin. Nutr. 26: 1251.Google Scholar
  45. Schnegg, A., and Kirchgessner, M., 1975a, Zur Essentialität von Nickel für das tierische Wachstum, Z. Tierphysiol. Tierernährg. Futtermittelkd. 36: 63.CrossRefGoogle Scholar
  46. Schnegg, A., and Kirchgessner, M., 1975b, Veränderungen des Hämoglobingehaltes, der Erythrozytenzahl und des Hämatokrits bei Nickelmangel, Nutr. Metab. 19: 268.CrossRefGoogle Scholar
  47. Schnegg, A., and Kirchgessner, M., 1976a, Zur Absorption und Verfügbarkeit von Eisen bei Nickel-Mangel, Int. Z. Vitaminforsch. 46: 96.Google Scholar
  48. Schnegg, A., and Kirchgessner, M., 1976b, Zur Interaktion von Nickel mit Eisen, Kupfer und Zink, Arch. Tierernähr. 26: 543.CrossRefGoogle Scholar
  49. Schnegg, A., and Kirchgessner, M., 1977a, Zur Differentialdiagnose von Fe-und Ni-Mangel durch Bestimmung einiger Enzymaktivitäten, Zentralbl. Veterinär med. Reiche A 24: 242.CrossRefGoogle Scholar
  50. Schnegg, A., and Kirchgessner, M., 1977b, Aktivitätsänderungen von Enzymen der Leber und Niere im Nickel-bzw. Eisen-Mangel, A. Tierphysiol. Tierernährg. Futtermittelkd. 38: 200.CrossRefGoogle Scholar
  51. Schnegg, A., and Kirchgessner, M., 1977c, Alkalische und saure Phosphatase-Aktivität in Leber und Serum bei Ni-bzw. Fe-Mangel, Int. Z. Vitaminforschung 47: 274.Google Scholar
  52. Schnegg, A., and Kirchgessner, M., 1977d, Konzentrationsänderungen einiger Substrate in Serum und Leber bei Ni-bzw. Fe-Mangel, Z. Tierphysiol. Tierernährg. Futtermittelkd. 39: 247.CrossRefGoogle Scholar
  53. Schnegg, A., and Kirchgessner, M., 1978, Ni deficiency and its effects on metabolism, in Trace Element Metabolism in Man and Animals-3 ( M. Kirchgessner, ed.), pp. 236–243, Universität München, Freising-Weihenstephan.Google Scholar
  54. Schroeder, H. A., and Balassa, J. J., 1966, Abnormal trace metals in man: arsenic, J. Chronic Dis. 19: 85.CrossRefGoogle Scholar
  55. Schwarz, K., 1974, New essential trace elements (Sn, V, F, Si): Progress report and outlook, in Trace Element Metabolism in Animals-2 ( W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 355–380, University Park Press, Baltimore.Google Scholar
  56. Schwarz, K., and Milne, D. B., 1971, Growth effects of vanadium in the rat, Science 174: 426.CrossRefGoogle Scholar
  57. Schwarz, K., and Milne, D. B., 1972, Fluorine requirement for growth in the rat, Bioinorg. Chem. 1: 331.CrossRefGoogle Scholar
  58. Schwarz, K., and Spallholz, J., 1976, Growth effects of small cadmium supplements in rats maintained under trace-element controlled conditions, Fed. Proc. 35: 255.Google Scholar
  59. Schwarz, K., Milne, D. B., and Vinyard, E., 1970, Growth effects of tin compounds in rats maintained in a trace element-controlled environment, Biochem. Biophys. Res. Commun. 40: 22.CrossRefGoogle Scholar
  60. Skinner, J. T., and McHargue, J. S., 1946, Supplementary effects of arsenic and manganese or copper in the synthesis of hemoglobin, Am. J. Physiol. 145: 500.Google Scholar
  61. Söremark, R., 1967, Vanadium in some biological specimens, J. Nutr. 92: 183.Google Scholar
  62. Spears, J. W., Hatfield, E. E., and Forbes, R. M., 1978a, Nickel depletion in the young ovine, Fed. Proc. 37: 404.Google Scholar
  63. Spears, J. W., Hatfield, E. E., Forbes, R. M., and Koenig, S. E., 1978b, Studies on the role of nickel in the ruminant, J. Nutr. 108: 313.Google Scholar
  64. Strasia, C. A., 1971, Vanadium: Essentiality and toxicity in the laboratory rat, Ph.D. Thesis, University Microfilms, Ann Arbor.Google Scholar
  65. Sunderman, F. W., Jr., Nomoto, S., Morang, R., Nechay, M. W., Burke, C. N., and Nielsen, S. W., 1972, Nickel deprivation in chicks, J. Nutr. 102: 259.Google Scholar
  66. Sunderman, F. W., Jr., Coniston, F., Eichhorn, G. L., Fellows, J. A., Mastromatteo, E., Reno, H. T., and Samitz, M. H., 1975, Nickel, National Research Council, National Academy of Sciences, Washington, D.C.Google Scholar
  67. Tao, S., and Suttie, J. W., 1976, Evidence for a lack of an effect of dietary fluoride level on reproduction in mice, J. Nutr. 106: 1115.Google Scholar
  68. Underwood, E. J., 1977, Trace Elements in Human and Animal Nutrition, 4th ed., pp. 388–397, Academic Press, New York.Google Scholar
  69. Wegner, M. E., Singer, L., Ophaug, R. H., and Magil, S. G., 1976, The interrelation of fluoride and iron in anemia, Proc. Soc. Exp. Biol. Med. 153: 414.Google Scholar
  70. Welch, R. M., and Cary, E. E., 1975, Concentration of chromium, nickel, and vanadium in plant material, J. Agric. Food Chem. 23: 479.CrossRefGoogle Scholar
  71. Williams, D. L., 1973, Biological value of vanadium for rats, chickens, and sheep, Ph.D. Thesis, University Microfilms, Ann Arbor.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Forrest H. Nielsen
    • 1
  1. 1.Human Nutrition Laboratory, Science and Education AdministrationUnited States Department of AgricultureGrand ForksUSA

Personalised recommendations