4He and 3He Calorimetric Absorption Spectroscopy: Principles and Results on InGaAs/AlInAs Quantum Wells and Fe in InP and GaAs

  • D. Bimberg
  • T. Wolf
  • J. Böhrer
Part of the NATO ASI Series book series (NSSB, volume 249)


A novel absorption technique, Calorimetric Absorption Spectroscopy (CAS), is compared to other photothermally based spectroscopic methods. CAS is more sensitive than any other low-temperature absorption technique reported hitherto and it is quantitative. The method is based on the integral detection of phonons emitted during nonradiative recombination processes. A low-temperature resistance thermometer acts as phonon detector. The sensitivity of CAS increases drastically with decreasing temperature. An increase in sensitivity by an order of magnitude to 10 pW is reached by decreasing the base temperature from 1.3 K (4He-temperatures) to 0.5 K (3He-temperatures). Depending on the excitation density, αd products down to 10−10 can be detected. The experimental set-up to perform CAS measurements at 3He temperatures is described and modeled in detail. A direct determination of quantum efficiencies, obtained by combining CAS with calorimetric transmission spectroscopy (CTS), is demonstrated. Recent applications of CAS for the characterization of thin InGaAs/AlInAs quantum wells as well as for the study of the fine structure of deep traps like Fe centers in InP and GaAs are presented.


Quantum Efficiency Base Temperature High Spectral Resolution Absorption Technique Metalorganic Vapour Phase Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Razeghi, Ph. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozacki, Appl. Phys. Lett. 52, 117 (1988).ADSCrossRefGoogle Scholar
  2. [2]
    A. Bubenzer, S. Hunklinger, K. Dransfeld, Journal of Non-Cryst. Solids 40, 605 (1980).ADSCrossRefGoogle Scholar
  3. [3]
    D. Bimberg, A. Bubenzer, Appl. Phys. Lett. 38, 803 (1981).ADSCrossRefGoogle Scholar
  4. [4]
    H. Gruhl, H.-P. Dorn and K. Winzer, Appl. Phys. B 38, 199 (1985).ADSCrossRefGoogle Scholar
  5. [5]
    A.Juhl and D. Bimberg, J. Appl. Phys. 64, 303 (1988).CrossRefGoogle Scholar
  6. [6]
    R.L. Swofford, J.A. Morrel, J. Appl. Phys. 49, 3667 (1978).ADSCrossRefGoogle Scholar
  7. [7]
    An overview of PAS is given in Y.H. Pao: Optoacoustic Spectroscopy and Detection, Academic, New York, 1977.Google Scholar
  8. [8]
    For PAS at low temperatures see R. Kuhnert and R. Helbig, Appl. Opt. 20, 4149 (1981).CrossRefGoogle Scholar
  9. [9]
    W.B. Jackson, N.M. Amer, A.C. Boccara, D. Fournier, Appl. Optics 20, 1333 (1981).ADSCrossRefGoogle Scholar
  10. [10]
    J.S. Yoon, S.S. Lee, Appl. Phys. Lett. 46, 913 (1985).ADSCrossRefGoogle Scholar
  11. [11]
    M. Itoh, J. Appl. Phys. 53, 5140 (1982).ADSCrossRefGoogle Scholar
  12. [12]
    K. Albert, H. v. Löhneisen, W. Sander, H.J. Schink, Cryogenics 22, 417 (1982).CrossRefGoogle Scholar
  13. [13]
    R. Krüger, M. Meissner, J. Mimkes, A. Tausend, Phys. Stat. Sol. (a) 17, 471 (1973).ADSCrossRefGoogle Scholar
  14. [14]
    P.J. Dean, D.G.Thomas, Phys. Rev. 150, 690 (1966).CrossRefGoogle Scholar
  15. [15]
    A. Juhl, D. Oertel, R. Bauer, C. Maczey, and D. Bimberg, Acta Physica Polonica, A 69, 877 (1986).Google Scholar
  16. [16]
    A. Juhl, D. Bimberg, Semi-Insulating III-V Materials, Hakone, Japan, edited by H. Kukimoto and S. Miyazawa, ( North-Holland, Amsterdam, 1986 ), p. 477.Google Scholar
  17. [17]
    A. Juhl, D. Bimberg, Appl. Phys. Lett. 50, 1292 (1987).ADSCrossRefGoogle Scholar
  18. [18]
    S. Houbloss, A. Nakib, A. Vasson, A.-M. Vasson, C.A. Bates, J.L.Dunn, W. Ulrici, J. Phys. C: Solid State Phys. 20, L467 (1987).ADSCrossRefGoogle Scholar
  19. [19]
    A. Görger, B.K. Meyer and J.-M. Spaeth, Semi-Insulating III-V Materials, Malmö, Sweden, edited by G. Grossmann and L. Ledebo, ( North-Holland, Amsterdam, 1988 ), p. 331.Google Scholar
  20. [20]
    B. Clerjaud, priv. communication.Google Scholar
  21. [21]
    G. Jeiter and D. Bimberg, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. Bimberg
    • 1
  • T. Wolf
    • 1
  • J. Böhrer
    • 1
  1. 1.Institut für FestkörperphysikTechnische Universität BerlinBerlin 12Germany

Personalised recommendations