Force-Velocity-Length Relationship during Cardiac Hypertrophy

Time Course of Activation
  • Y. Lecarpentier
  • P. Gastineau
  • P. Y. Hatt
  • J. L. Martin


Basic mechanical properties observed during cardiac hypertrophy were studied in left ventricular rat papillary muscles after exposure to chronic pressure and/or volume overloading. It is always possible, during such overloading conditions, to define the level of contractility in terms of a force-velocity-length (F-V-L) relationship regardless of time and initial length. Thus, during a determined period of the contraction phase and for a given total load, shortening velocity remained an univocal time-invariant function of shortening length, involving a time-independent maximum intensity of activation. The onset of this precise phase was reached relatively soon after stimulus. The time-independent F-V-L relation was observed both in controls and in hypertrophied heart muscles, whatever the degree and the type of induced hypertrophy, and even during the latest phases of congestive heart failure.


Aortic Stenosis Cardiac Hypertrophy Papillary Muscle Heart Muscle Volume Overload 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, B. C., and Mommaerts, W. F. H. M. 1959. A study of inotropic mechanisms in the papillary muscle preparation. J. Gen. Physiol. 42:533–551.PubMedCrossRefGoogle Scholar
  2. 2.
    Bing, O. H. L., Matsushita, S., Fanburg, B. L., and Levine, H. J. 1971. Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ. Res. 28:234–245.PubMedCrossRefGoogle Scholar
  3. 3.
    Brady, A. J. 1965. Time and displacement dependence of cardiac contractility: Problems in defining the active state and force-velocity relations. Fed. Proc. 24:1410–1420.PubMedGoogle Scholar
  4. 4.
    Brady, A. J. 1966. Onset of contractility in cardiac muscle. J. Physiol. (Lond.) 184:560–580.Google Scholar
  5. 5.
    Brutsaert, D. L. 1974. The force-velocity-length-time interrelation of cardiac muscle. In: R. Porter, and D. W. Fitzsimons (eds.), The Physiological Basis of Starling’s Law of the Heart, pp. 155–175. Elsevier, Excerpta Medica, North-Holland, Amsterdam.Google Scholar
  6. 6.
    Brutsaert, D. L., and Claes, V. A. 1974. Onset of mechanical activation of mammalian heart muscle in calcium- and strontium-containing solutions. Circ. Res. 35:345–357.PubMedCrossRefGoogle Scholar
  7. 7.
    Brutsaert, D. L., Claes, V. A., and Sonnenblick, E. H. 1971. Velocity of shortening of unloaded heart muscle and the length-tension relation. Circ. Res. 29:63–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Brutsaert, D. L., De Clerck, N. M., Goethals, M. A., and Housmans, P. R. 1978. Relaxation of ventricular cardiac muscle. J. Physiol. (Lond.) 283:469–480.Google Scholar
  9. 9.
    Brutsaert, D. L., Housmans, P. R., and Goethals, M. A. 1980. Dual control of relaxation: Its role in the ventricular function in the mammalian heart. Circ. Res. 47:637–652.PubMedCrossRefGoogle Scholar
  10. 10.
    Dhalla, N. S., Das, P. K., and Sharma, G. P. 1978. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10:363–385.PubMedCrossRefGoogle Scholar
  11. 11.
    Edman, K. A. P., and Nilsson, E. 1968. Mechanical parameters of myocardial contraction studied at a constant length of the contractile element. Acta Physiol. Scand. 72:205–219.PubMedCrossRefGoogle Scholar
  12. 12.
    Edman, K. A. P., and Nilsson, E. 1972. Relationships between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand. 85:488–500.PubMedCrossRefGoogle Scholar
  13. 13.
    Hatt, P. Y., Rakusan, K., Gastineau, P., and Laplace, M. 1979. Morphometry and ultra-structure of heart hypertrophy induced by chronic volume overload (aorto-caval fistula in the rat). J. Mol. Cell. Cardiol. 11:989–998.PubMedCrossRefGoogle Scholar
  14. 14.
    Hill, A. V. 1951. The transition from rest to full activity in muscle: The velocity of shortening. Proc. R. Soc. Lond. [Biol.] 138:329–338.CrossRefGoogle Scholar
  15. 15.
    Jewell, B. R., and Wilkie, D. R. 1960. The mechanical properties of relaxing muscle. J. Physiol. (Lond.) 152:30–47.Google Scholar
  16. 16.
    Jouannot, P., and Hatt, P. Y. 1975. Rat myocardial mechanics during pressure-induced hypertrophy development and reversal. Am. J. Physiol. 229:355–364.PubMedGoogle Scholar
  17. 17.
    Julian, F. J., and Moss, R. L. 1976. The concept of active state in striated muscle. Circ. Res. 38:53–59.PubMedCrossRefGoogle Scholar
  18. 18.
    Lecarpentier, Y. C., Chuck, L. H. S., Housmans, P. R., De Clerck, N. M., and Brutsaert, D. L. 1979. Nature of load dependence of relaxation in cardiac muscle. Am. J. Physiol. 237:H455–H460.PubMedGoogle Scholar
  19. 19.
    Lecarpentier, Y., Martin, J. L., Gastineau, P., and Hatt, P. Y. 1980. Mammalian heart mechanical properties during pressure and volume cardiac hypertrophy. J. Mol. Cell. Cardiol. 12(Suppl. 1):92.Google Scholar
  20. 20.
    Sonnenblick, E. H. 1962. Force-velocity relations in mammalian heart muscle. Am. J. Physiol. 202:931–939.PubMedGoogle Scholar
  21. 21.
    Sonnenblick, E. H. 1962. Implications of muscle mechanics in the heart. Fed. Proc. 21(Suppl.):975–990.PubMedGoogle Scholar
  22. 22.
    Sonnenblick, E. H. 1965. Instantaneous force-velocity-length determinants in the contraction of heart muscle. Circ. Res. 16:441–451.PubMedCrossRefGoogle Scholar
  23. 23.
    Sonnenblick, E.H. 1967. Active state in heart muscle. Its delayed onset and modification by inotropic agents. J. Gen. Physiol. 50:661–676.PubMedCrossRefGoogle Scholar
  24. 24.
    Sonnenblick, E. H., and Parmley, W. W. 1967. Active state in heart muscle: Force-velocity-length relations, and the variable onset and duration of maximum active state. In: D. I. Abramson (ed.), Circulation in the Extremities, pp. 65–83. Academic Press, London, New York.Google Scholar
  25. 25.
    Spann, J. F., Buccino, R. A., Sonnenblick, E. H., and Braunwald, E. 1967. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ. Res. 21:341–354.PubMedCrossRefGoogle Scholar
  26. 26.
    Spann, J. F., Covell, J. W., Eckberg, A. L., Sonnenblick, E. H., Ross, J., Jr., and Braunwald, E. 1972. Contractile performance of the hypertrophied and chronically failing cat ventricle. Am. J. Physiol. 223:1150–1157.PubMedGoogle Scholar
  27. 27.
    Taylor, S. R., and Rüdel, R. 1970. Striated muscle fibers: Inactivation of contraction induced by shortening. Science 167:882–884.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Y. Lecarpentier
    • 1
  • P. Gastineau
    • 1
  • P. Y. Hatt
    • 1
  • J. L. Martin
    • 2
  1. 1.I.N.S.E.R.M. U2Hôpital Léon BernardLimeil-BrévannesFrance
  2. 2.E.N.S.T.A.Ecole PolytechniquePalaiseauFrance

Personalised recommendations