Advertisement

Cyclic Nucleotides and Changes in Protein Kinase Activity Ratio in the Ischemic and Nonischemic Myocardium

  • E.-G. Krause
  • S. Bartel
  • P. Karczewski
  • K.-F. Lindenau

Abstract

Following coronary artery ligation (CAL), levels of cAMP and the activity ratio of cAMP-dependent protein kinase, of Phosphorylase kinase, and of Phosphorylase are significantly elevated in both ischemic and nonischemic areas of the canine left ventricle. The aerobic level of cAMP was found to be 0.4 to 0.6 pmol/mg myocardium only after a precooled clamp or a cryobiopsy device was employed to guarantee tissue freezing in situ. Maximal changes in response to ischemia are observed within 2 min in both parts of the heart. Twenty minutes after the onset of ischemia, different responses have been found in the nonischemic and ischemic tissue. Whereas the levels of cAMP and the activity ratio of protein kinase, of Phosphorylase kinase, and of Phosphorylase returned to aerobic values in the nonischemic area, these parameters remained elevated in the ischemic area. The changes in the levels of myocardial cAMP and in the cAMP-dependent protein kinase activity ratio following CAL could be prevented by propranolol.

Keywords

Activity Ratio Cyclic Nucleotide Ventricular Muscle Coronary Artery Ligation Phosphorylase Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, P. 1973. The subunit structure of rabbit skeletal muscle Phosphorylase kinase and the molecular basis of its activation reactions. Eur. J. Biochem. 34:1–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Corr, P. B., Witkowski, F. X., and Sobel, B. E. 1978. Mechanism contributing to malignant dysrhythmias induced by ischemia in the cat. J. Clin. Invest. 61:109–119.PubMedCrossRefGoogle Scholar
  3. 3.
    Dobson, J. G. 1978. Protein kinase regulation of cardiac Phosphorylase activity and contractility. Am. J. Physiol. 234:H638-H648.PubMedGoogle Scholar
  4. 4.
    Dobson, J. G., and Mayer, S. E. 1973. Mechanisms of activation of cardiac glycogen Phosphorylase in ischemia and anoxia. Circ. Res. 33:412–420.PubMedCrossRefGoogle Scholar
  5. 5.
    Gilman, A. 1970. A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. Natl. Acad. Sci. U.S.A. 67:305–312.PubMedCrossRefGoogle Scholar
  6. 6.
    Harper, J. R. and Brooker, G. 1975. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2’0 acetylation by acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res. 1:207–218.PubMedGoogle Scholar
  7. 7.
    Illingworth, B., and Cori, G. T. 1953. Crystalline muscle Phosphorylase. Biochem. Prep. 3:1–9.Google Scholar
  8. 8.
    Keely, S. L., and Corbin, J. D. 1977. Involvement of cAMP-dependent protein kinase in the regulation of heart contractile force. Am. J. Physiol. 2:H269-H275.Google Scholar
  9. 9.
    Krause, E.-G., Bartel, S., Reich, J.-G., and Winkler, J. 1981. On the activation of protein kinase by cAMP in the myocardium in vivo. Biochem. S oc. Trans. 9:24 IP.Google Scholar
  10. 10.
    Krause, E.-G., and Hosenfelder, W. 1981. Probennehmer zur tiefgekühlten Gewebsentnahme aus biologischen Material. Patentschrift 149464, Amt für Erfindungs- und Patentwesen der DDR, Berlin.Google Scholar
  11. 11.
    Krause, E.-G. and Wollenberger, A. 1967. Aktivierung der Phosphorylase-6-kinase im akut ischämischen Myokard. Acta Biol. Med. Germ. 19:381–386.PubMedGoogle Scholar
  12. 12.
    Krause, E.-G., and Wollenberger, A. 1980. Cyclic nucleotides in heart in acute myocardial ischemia and hypoxia. Adv. Cyclic Nucleotide Res. 12:51–61.Google Scholar
  13. 13.
    Krause, E.-G., Ziegelhöffer, A., Fedelesova, M., Styk, J., Kostolansky, S., Gabauer, I., Blasig, I., and Wollenberger, A. 1978. Myocardial cyclic nucleotide levels following coronary artery ligation. Adv. Cardiol. 25:119–129.PubMedGoogle Scholar
  14. 14.
    Krebs, E. G., Graves, J. G., and Fischer, E. H. 1959. Factors affecting the activity of muscle Phosphorylase b kinase. J. Biol. Chem. 234:2867–2873.PubMedGoogle Scholar
  15. 15.
    Malliani, A., Schwartz, P. J., and Zanchetti, A. 1969. A sympathetic reflex elicited by experimental coronary occlusion. Am. J. Physiol. 217:703–709.PubMedGoogle Scholar
  16. 16.
    Matsushita, S., Shinawaga, T., Sukai, M., Moroki, N., Karamato, K., and Murakami, M. 1978. Comparison of adenosine 3′:5′ monophosphate dependent protein kinase from various cardiac muscle. In: VIII. World Congress on Cardiology, Tokyo, p. 560.Google Scholar
  17. 17.
    Nimmo, M. G., and Cohen, P. 1977. Hormonal control of protein phosphorylation. Adv. Cyclic Nucleotide Res. 8:146–266.Google Scholar
  18. 18.
    Opie, L. H., Nathan, D., and Lubbe, W. F. 1979. Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am. J. Cardiol. 43:131–148.PubMedCrossRefGoogle Scholar
  19. 19.
    Shahab, L., Haase, M., Schiller, U., and Wollenberger, A. 1969. Noradrenalinabgabe aus dem Hundeherzen nach vorübergehender Okklusion einer Koronararterie. Acta Biol. Med. Germ. 22:135–143.PubMedGoogle Scholar
  20. 20.
    Tsien, R. W. 1977. Cyclic AMP and contractile activity in heart. Adv. Cyclic Nucleotide Res. 8:364–420.Google Scholar
  21. 21.
    Podzuweit, T., Dalby, A. J., Cherry, G. W., and Opie, L. H. 1978. Cyclic AMP levels in ischemic and nonischemic myocardium following coronary artery ligation: Relation to ventricular fibrillation. J. Mol. Cell. Cardiol. 10:81–94.PubMedCrossRefGoogle Scholar
  22. 22.
    Pool, P. E., Norris, G. F., Levis, R. M., and Covell, J. W. 1968. A biopsy-drill permitting rapid freezing. J. Appl. Physiol. 24:832–833.PubMedGoogle Scholar
  23. 23.
    Wollenberger, A. 1975. The role of cyclic AMP in the adrenergic control of myocardium. In: W. G. Nayler (ed.), Contraction and Relaxation of the Heart, pp. 113–190. Academic Press, London.Google Scholar
  24. 24.
    Wollenberger, A., Krause, E.-G., and Heier, G. 1969. Stimulation of 3’,5’-cyclic AMP formation in dog myocardium following arrest of blood flow. Biochem. Biophys. Res. Commun. 36:664–670.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • E.-G. Krause
    • 1
    • 2
  • S. Bartel
    • 1
    • 2
  • P. Karczewski
    • 1
    • 2
  • K.-F. Lindenau
    • 1
    • 2
  1. 1.Division of Cellular and Molecular CardiologyCentral Institute of Heart and Circulation Research Academy of Sciences of the GDRBerlin-BuchGermany
  2. 2.Surgical ClinicFaculty of Medicine (Charité) of Humboldt University at BerlinBerlinGerman Democratic Republic

Personalised recommendations