Advertisement

Myosin Light Chain Phosphorylation during Regional Myocardial Ischemia

  • P. Cummins
  • D. M. Yellon
  • D. J. Hearse

Abstract

The extent of cardiac myosin light chain phosphorylation was measured during regional myocardial ischemia in the dog. A multiple-projectile cutter was used to sample adjacent biopsies from the normal and ischemic areas of the myocardium in an open-chested dog heart following 30 min of coronary artery ligation. Measurement of metabolite levels and blood flow in the individual biopsies clearly defined the border zone between normal and ischemic myocardium. Myosin light chain phosphorylation was measured after isoelectric focusing of biopsy samples and subsequent densitometric analysis. A 50% increase in phosphorylation was observed in the ischemic zone which may correlate with the reduced contractility which is a feature of the ischemic myocardium.

Keywords

Light Chain Myocardial Blood Flow Myosin Light Chain Surrounding Normal Tissue Coronary Artery Ligation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelstein, R. S. 1980. Phosphorylation of muscle contractile proteins. Fed. Proc.39:1544–1546.PubMedGoogle Scholar
  2. 2.
    Barany, K., Barany, M., Gillis, J. M., and Kushmerick, M. J. 1980. Myosin light chain phosphorylation during the contraction cycle of frog muscle. Fed. Proc.39:1547–1551.PubMedGoogle Scholar
  3. 3.
    Cummins, P., Price, K. M., and Littler, W. A. 1980. Foetal myosin light chain in human ventricle. J. Muscle Res. Cell Motility1:357–366.CrossRefGoogle Scholar
  4. 4.
    Fishbein, M. C, Hare, C. A., Gissen, S. A., Spadoro, J., Maclean, D., and Maroko, P. R. 1980. Identification and quantification of histochemical border zones during the evolution of myocardial infarction in the rat. Cardiovasc. Res.14:41–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Frearson, N., and Perry, S. V. 1975. Phosphorylation of the light-chain components from cardiac and red skeletal muscles. Biochem. J.151:99–107.PubMedGoogle Scholar
  6. 6.
    Hearse, D. J. 1980. Oxygen deprivation and early myocardial contractile failure. A reassessment of the possible role of adenosine triphosphate. Am. J. Cardiol.44:1115–1119.CrossRefGoogle Scholar
  7. 7.
    Hearse, D. J., Opie, L., Katzeff, I. E., Lubbe, W. F., Van der Werff, T. J., Peisach, M., and Boulle, G. 1977. Characterization of the ‘border zone’ in acute regional ischemia in the dog. Am. J. Cardiol.40:716–726.PubMedCrossRefGoogle Scholar
  8. 8.
    Hearse, D. J., Yellon, D. M., Chappell, D. A., Wyse, R. K. H., and Ball, G. A. 1981. A high velocity impact device for obtaining multiple, contiguous myocardial biopsies. J. Mol. Cell. Cardiol.13:197–206.PubMedCrossRefGoogle Scholar
  9. 9.
    Holroyde, M. J., Small, D. A. P., Howe, E., and Solaro, R. J. 1979. Isolation of cardiac myofibrils and myosin light chains with in vivo levels of light chain phosphorylation. Biochim. Biophys. Acta587:628–637.PubMedCrossRefGoogle Scholar
  10. 10.
    Jeacocke, S. A., and England, P. J. 1980. Phosphorylation of myosin light chains in perfused rat heart. Biochem, J. 188:763–768.Google Scholar
  11. 11.
    Kopp, S. J., and Barany, M. 1979. Phosphorylation of the 19,000-dalton light chain of myosin in perfused rat heart under the influence of negative and positive inotropic agents. J. Biol. Chem.254:12007–12012.Google Scholar
  12. 12.
    Kubier, W., and Katz, A. M. 1977. Mechanism of early pump failure of the ischaemic heart: Possible role of adenosine triphosphate depletion and energie phosphate accumulation. Am J. Cardiol.40:467–471.CrossRefGoogle Scholar
  13. 13.
    Lubbe, W. F., Peisach, M., Pretorius, R., Brugreel, K. J. J., and Opie, L. H. 1974. Distribution of myocardial blood flow before and after coronary artery ligation in the baboon. Relation to early ventricular fibrillation. Cardiovasc. Res.8:478–487.PubMedCrossRefGoogle Scholar
  14. 14.
    O’Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250:4007–4021.PubMedGoogle Scholar
  15. 15.
    Perrie, W. T., Smillie, L. B., and Perry, S. V. 1973. A phosphorylated light-chain component of myosin from skeletal muscle. Biochem. J.135:151–164.PubMedGoogle Scholar
  16. 16.
    Puri, P. S. 1974. Modification of experimental myocardial infarct size by cardiac drugs. Am. J. Cardiol.33:521–528.PubMedCrossRefGoogle Scholar
  17. 17.
    Small, J. V., and Sobieszek, A. 1977. Ca-regulation of mammalian smooth muscle acto-myosin via a kinase-phosphatase dependent phosphorylation and dephosphorylation of the 20,000 M light chain of myosin. Eur. J. Biochem.76:521–530.PubMedCrossRefGoogle Scholar
  18. 18.
    Stull, J. T., Manning, D. R., High, C. W., and Blumenthal, D. K. 1980. Phosphorylation of contractile proteins in heart and skeletal muscle. Fed. Proc.39:1552–1557.PubMedGoogle Scholar
  19. 19.
    Theroux, P., Franklin, D., Ross, J., Jr., and Kemper, W. S. 1974. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ. Res.35:896–908.PubMedCrossRefGoogle Scholar
  20. 20.
    Vatner, S. F. 1980. Correlation between acute reductions in myocardial blood flow and function in conscious dog. Circ. Res.47:201–207.PubMedCrossRefGoogle Scholar
  21. 21.
    Yellon, D. M. 1979. A multiple biopsy gun for the study of three-dimensional metabolic geometry. J. Physiol.293:5–6.Google Scholar
  22. 22.
    Yellon, D. M., Hearse, D. J., Crewe, R., Grannell, J., and Wyse, R. K. H. 1980. Characterization of the interface between normal and ischemic tissue during acute myocardial infarction. Am. J. Cardiol.47:1233–1239.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • P. Cummins
    • 1
  • D. M. Yellon
    • 2
  • D. J. Hearse
    • 2
  1. 1.Molecular Cardiology Unit, Department of Cardiovascular MedicineUniversity of BirminghamBirminghamEngland
  2. 2.The Rayne InstituteSt. Thomas’ HospitalLondonEngland

Personalised recommendations