Skip to main content

Correlation among Water Content, Left Ventricular Function, Coronary Blood Flow, and Myocardial Metabolism after Hypothermic Ischemic Cardiac Arrest

  • Chapter
Advances in Myocardiology

Abstract

Subendocardial ischemia is a common cause of death following ischemic cardiac arrest. We studied relationships among myocardial water content (WC), left ventricular function, coronary blood flow, and myocardial metabolism following ischemic cardiac arrest. Under cardiopulmonary bypass with hypothermia, 120 min of aortic occlusion was employed, and myocardial temperature was kept around 20°C in 10 mongrel dogs. Left ventricular function (peak LVP, max dp/dt, LVEDP, LVSWI), coronary blood flow, myocardial enzymes (m-GOT, total CPK, MB-CPK), myocardial ATP and creatine phosphate (CP), and WC of the suben-docardium of the left ventricle were measured. Data were obtained in the control state and immediately and 30 and 60 min after aortic unclamping. Significant negative correlations were obtained between WC and max dp/dt (r = -0.8384), coronary blood flow (r = -0.9928), ATP (r = -0.7038), and CP (r = -0.7835). Significant positive correlations were obtained between WC and LVEDP (r = 0.7525), m-GOT (r = 0.7638), and total CPK (r = 0.7079). These data suggest that myocardial edema results in depression of left ventricular function and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, W. B., Blackstone, E. H., and Kouchoukos, N. T. 1974. Effects of cardiopulmonary bypass and ischemic cardioplegia on the diastolic pressure-volume relationship and water content of the canine left ventricle. Circulation 49/50(Suppl.):III–19.

    Google Scholar 

  2. Buckberg, G. D., Fixier, D. E., Archie, J. P., and Hoffman, J. I. E. 1972. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ. Res. 30:67–81.

    Article  PubMed  CAS  Google Scholar 

  3. Buckberg, G. D., Towers, B., Foglia, D. E., Mulder, D. G., and Maloney, J. V. 1972. Subendocardial ischemia after cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 64:669–684.

    PubMed  CAS  Google Scholar 

  4. De Gasperis, C, Gonzales-Lavin, L., Pellegrini, A., and Ross, D. N. 1971/72. Ultrastruc-tural aspects of human myocardial capillaries during open heart surgery. Cardiology 56:333–336.

    Google Scholar 

  5. Foglia, R. P., Steed, D. L., Follette, D. M., DeLana, E., and Buckberg, G. D. 1979. Iatrogenic myocardial edema with potassium cardioplegia. J. Thorac. Cardiovasc. Surg. 78:217–222.

    PubMed  CAS  Google Scholar 

  6. Laks, H., Standeven, J., Blair, D., Hahn, J., Jellinek, M., and Willman, V. L. 1977. The effects of cardiopulmonary bypass with crystalloid and colloid hemodilution on myocardial extravascular water. J. Thorac. Cardiovasc. Surg. 73:129–138.

    PubMed  CAS  Google Scholar 

  7. Leaf, A. 1973. Cell swelling: A factor in ischemic tissue injury. Circulation 48:455–458.

    Article  PubMed  CAS  Google Scholar 

  8. Mukherjee, A., Buja, L. M., Scales, G. C, Fink, G. C., Templeton, G. H., Platt, M. R., and Willerson, J. T. 1978. Abnormal myocardial fluid retention as an early manifestation of ischemic injury. In: T. Kobayashi, Y. Ito, and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 12: Cardiac Adaptation, pp. 245–252. University Park Press, Baltimore.

    Google Scholar 

  9. Salisbury, P. F., Cross, C. E., and Rieben, P. A. 1960. Distensibility and water content of heart muscle before and after injury. Circ. Res. 8:788–793.

    Article  PubMed  CAS  Google Scholar 

  10. Sunamori, M., Hatano, R., Suzuki, T., Yamamoto, N., Yamada, T., Kumazawa, T., and Sunaga, T. 1977. No-reflow phenomenon in the myocardium after the cardiopulmonary bypass: A genesis of the subendocardial ischemia. Jpn. J. Circ. 41:1–10.

    Article  CAS  Google Scholar 

  11. Utley, J. R., Michalsky, G. B., Bryant, L. R., Mobin-Uddin, K., and McKean, H. E. 1973. Determinants of myocardial water content during cardiopulmonary bypass. J. Thorac’ Cardiovasc. Surg. 68:8–16.

    Google Scholar 

  12. Wahlen, D. A., Hamilton, D. G., Ganote, C. E., and Jennings, R. B. 1974. Effect of a transient period of ischemia on myocardial cells: 1. Effects on cell volume regulation. Am. J. Cardiol. 74:381–397.

    Google Scholar 

  13. Willerson, J. T., Watson, J. T., Hutton, I., Templeton, G. H., and Fixier, D. E. 1975. Reduced myocardial reflow and increased coronary vascular resistance following prolonged myocardial ischemia in the dog. Circ. Res. 36:771–781.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amano, J., Sunamori, M., Kameda, T., Okamura, T., Suzuki, A. (1983). Correlation among Water Content, Left Ventricular Function, Coronary Blood Flow, and Myocardial Metabolism after Hypothermic Ischemic Cardiac Arrest. In: Chazov, E., Saks, V., Rona, G. (eds) Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4441-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4441-5_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4443-9

  • Online ISBN: 978-1-4757-4441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics