Adaptive and Pathological Alterations in Experimental Cardiac Hypertrophy

  • R. Jacob
  • G. Kissling
  • G. Ebrecht
  • C. Holubarsch
  • I. Medugorac
  • H. Rupp


Based on investigations of various models of experimental cardiac hypertrophy (renal hypertension, spontaneous hypertension, aortic stenosis, swimming training, thyrotoxicosis), an attempt has been made to characterize adaptive and pathological alterations that are inherent to or accompany the process of hypertrophy. In principle, the designation of a process as adaptive is rooted in a teleological point of view and implies that the basic tendency of the respective structural and functional alterations is appropriate for coping with the altered functional requirements. This does not mean, however, that such alterations are favorable under all conditions and in all stages of hypertrophy. Since organisms generally reveal relatively stereotypic reaction patterns, the terms “adaptive” and “pathological” are not mutually exclusive in the final analysis. In the chronically pressure-loaded ventricle, nearly all alterations are ambiguous (myocardial mass increase, prolongation of the action potential, overproportional increase of intracellular contractile material, decrease of myofibrillar ATPase activity). The altered ATPase activity, which is based on a shift in the isoenzyme pattern of myosin in the direction of isoenzyme V3, is accompanied by a decrease in unloaded shortening velocity but an increase in the efficiency of tension development, as is reflected in reduced oxygen consumption (per wall stress and heart rate) of the whole heart under isovolumetric conditions. This change in the elementary contractile process and the myofibrillar ATPase activity need not be interpreted a priori as negative. However, the ability to adapt to other types of loading, e.g., physical exertion with corresponding increase in heart rate, is limited by the specialization for coping with enhanced pressure load. The term “overadaptation” should be reserved for stages and degrees of hypertrophy in which the negative effects of double-faced alterations predominate. Rapid, excessive increase in pressure loading, as well as long-term hemodynamic overloading, leads to degenerative alterations of the myocardium. At the level of the whole ventricle, structural dilatation results in a decreased cardiac efficiency. Fibrosis of the ventricular wall, the pathogenesis of which is not always unequivocal, is also a negative factor for mechanical performance. Since there are pronounced degrees of hypertrophy without connective tissue increase, e.g., in thyrotoxicosis, fibrosis and accompanying decreased distensibility of the myocardium apparently are not necessarily involved in the development of hypertrophy. Ischemically induced alterations stemming from vasculopathy should be distinguished from hypertrophy-induced changes. The adaptive alteration of the heart in swim-trained rats, which involves an increase in myofibrillar ATPase activity and a shift in the myosin isoenzyme pattern in the direction of V1, leads to an increase in functional capacity at all levels and is in agreement with the generally accepted concept of contractility.


Aortic Stenosis Wall Stress Isoenzyme Pattern Swimming Training Hydroxyproline Concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpert, N. R. 1973. Myosin ATPase-activity and mechanical performance in normal and hypertrophied hearts. In: H. Roskamm and H. Reindell (eds.), Das Chronisch Kranke Herz, pp. 130–136. Schattauer, Stuttgart, New York.Google Scholar
  2. 2.
    Alpert, N. R., and Mulieri, L. A. 1981. The utilization of energy by the myocardium hypertrophied secondary to pressure overload. In: B. Strauer (ed.), The Heart in Hypertension, pp. 153–163. Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  3. 3.
    Aschoff, L., and Tawara, S. 1906. Die Heutige Lehre von den Pathologisch-Anatomischen Grundlagen der Herzschwache. G. Fischer, Jena.Google Scholar
  4. 4.
    Bartosova, D., Chvapil, M., Korecky, B., Poupa, O., Rakusan, K., Turek, Z., and Vizek, M. 1969. The growth of the muscular and collagenous parts of the rat heart in various forms of cardiomegaly. J. Physiol. (Lond.) 200:285–295.Google Scholar
  5. 5.
    Brenner, B., and Jacob, R. 1980. Calcium activation and maximum unloaded shortening velocity. Investigations on glycerinated skeletal and heart muscle preparations. Basic Res. Cardiol. 75:40–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Buchner, F., and Onishi, S. H. 1970. Herzhypertrophie und Herzinsuffizienz in der Sicht der Elektronenmikroskopie. Urban & Schwarzenberg, Munich.Google Scholar
  7. 7.
    Cooper, G., Puga, F. J., Zujko, K. J., Harrison, C. E., and Coleman, H. N. 1973. Normal myocardial function and energetics in volume-overload hypertrophy in the cat. Circ. Res. 32:140–148.PubMedCrossRefGoogle Scholar
  8. 8.
    Dhalla, N. S., Das, P. K., and Sharma, G. P. 1978. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10:363–385.PubMedCrossRefGoogle Scholar
  9. 9.
    Eppinger, H. 1931. Zur Pathologie der Kreislaufkorrelation. In: A. Bethe (ed.), Handbuch der Normalen und Pathologischen Physiologie, Vol. 16/2, pp. 1289–1402. Springer, Berlin.Google Scholar
  10. 10.
    Fleckenstein, A. 1968. Experimentelle Pathologie der akuten und chronischen Herzinsuffizienz. Verh. Dtsch. Ges. Kreislauf forsch. 34:15–34.Google Scholar
  11. 11.
    Gamble, W. J., Phornphutkul, C., Jumar, A. E., Sanders, G. L., Manasek, F. J., and Monroe, R. G. 1973. Ventricular performance coronary flow, and MVO2 in aortic coarctation hypertrophy. Am. J. Physiol. 224:877–883.PubMedGoogle Scholar
  12. 12.
    Gülch, R. W. 1980. The effect of elevated chronic loading on the action potential of mammalian myocardium. J. Mol. Cell. Cardiol. 12:415–420.PubMedCrossRefGoogle Scholar
  13. 13.
    Gülch, R. W., Baumann, R., and Jacob, R. 1979. Analysis of myocardial action potential in left ventricular hypertrophy of Goldblatt rats. Basic Res. Cardiol. 74:69–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Gülch, R. W., and Jacob, R. 1975. Length-tension diagram and force-velocity relations of mammalian cardiac muscle under steady-state conditions. Pfluegers Arch. 355:331–346.CrossRefGoogle Scholar
  15. 15.
    Gunning, J. F., and Coleman, H. N. 1973. Myocardial oxygen consumption during experimental hypertrophy and congestive heart failure. J. Mol. Cell. Cardiol. 5:25–38.PubMedCrossRefGoogle Scholar
  16. 16.
    Hatt, P. Y., Jouannot, P., Moravec, J., and Swynghedauw, B. 1974. Current trends in heart hypertrophy. Basic Res. Cardiol. 69:479–483.PubMedCrossRefGoogle Scholar
  17. 17.
    Hatt, P. Y., and Swynghedauw, B. 1968. Electron microscopic study of myocardium in experimental heart insufficiency. In: H. Reindell, J. Keul, and E. Doll (eds.), Herzinsuffizienz, Pathophysiologie und Klinik, pp. 19–23. Georg Thieme, Stuttgart.Google Scholar
  18. 18.
    Heilmann, C., Lindl, T., Muller, W., and Pette, D. 1980. Characterization of cardiac microsomes from spontaneously hypertonic rats. Basic Res. Cardiol. 75:92–96.PubMedCrossRefGoogle Scholar
  19. 19.
    Henry, P. D., Ahumada, G. G., Friedman, W. F., and Sobel, B. E. 1972. Simultaneously measured isometric tension and ATP hydrolysis in glycerinated fibers from normal and hypertrophied rabbit heart. Circ. Res. 31:740–749.PubMedCrossRefGoogle Scholar
  20. 20.
    Hepp, A., Hansis, M., Gülch, R., and Jacob, R. 1974. Left ventricular isovolumetric pressure-volume relations, “diastolic tone,” and contractility in the rat heart after physical training. Basic Res. Cardiol. 69:516–532.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoh, J. F. Y., McGrath, P. A., and Hale, P. T. 1978. Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement. J. Mol. Cell. Cardiol. 10:1053–1076.PubMedCrossRefGoogle Scholar
  22. 22.
    Holtz, J., von Restorff, W., Bard, P., and Bassenge, E. 1977. Transmural distribution of myocardial blood flow and of coronary reserve in canine left ventricular hypertrophy. Basic Res. Cardiol. 72:286–292.PubMedCrossRefGoogle Scholar
  23. 23.
    Holubarsch, C., and Jacob, R. 1979. Evaluation of elastic properties of myocardium. Experimental models of fibrosis and contracture in heart muscle strips. Z. Kardiol. 68:123–127.PubMedGoogle Scholar
  24. 24.
    Hugenholtz, P. G., Ellison, R. C., Urschel, C. W., Mirsky, I., and Sonnenblick, E. H. 1970. Myocardial force-velocity relationships in clinical heart disease. Circulation 41:191–202.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacob, R. 1976. Pathophysiologie der Herzmuskelinsuffizienz. In: W. Frommhold (ed.), Erkrankungen des Herzmuskels, Vol. 5, Tubinger Klinisch-Radiologie Seminar, pp. 25–36. Georg Thieme, Stuttgart.Google Scholar
  26. 26.
    Jacob, R., Brenner, B., Ebrecht, G., Holubarsch, C., and Medugorac, I. 1980. Elastic and contractile properties of the myocardium in experimental cardiac hypertrophy of the rat. Methodological and pathophysiological considerations. Basic Res. Cardiol. 75:253–261.PubMedCrossRefGoogle Scholar
  27. 27.
    Jacob, R., Ebrecht, G., Kämmereit, A., Medugorac, I., and Wendt-Gallitelli, M. F. 1977. Myocardial function in different models of cardiac hypertrophy. An attempt at correlating mechanical, biochemical and morphological parameters. Basic Res. Cardiol. 72:160–169.PubMedCrossRefGoogle Scholar
  28. 28.
    Jacob, R., Kämmereit, A., Medugorac, I., and Wendt-Gallitelli, M. F. 1976. Maximalgeschwindigkeit der lastfreien Verkurzung (Vmax), myokardiale Lesitungsfahigkeit und “Kontraktilitatsindizes” beim hypertrophierten Myokard. Z. Kardiol. 65:392–400.PubMedGoogle Scholar
  29. 29.
    Jacob, R., and Kissling, G. 1981. Left ventricular dynamics and myocardial function in Goldblatt hypertension of the rat. Biochemical, morphological and electrophysiological correlates. In: B. E. Strauer(ed.), The Heart in Hypertension, pp. 89–107. Springer, Berlin, Heidelberg, New York.Google Scholar
  30. 30.
    Jacob, R., and Nägle, S. 1969. Pathophysiologie des insuffizienten Herzens. Hippokrates 40:817–850.PubMedGoogle Scholar
  31. 31.
    Kämmereit, A., and Jacob, R. 1979. Alterations in rat myocardial mechanics under Goldblatt hypertension and experimental aortic stenosis. Basic Res. Cardiol. 74:389–405.PubMedCrossRefGoogle Scholar
  32. 32.
    Kämmereit, A., Medugorac, I., Steil, E., and Jacob, R. 1975. Mechanics of the isolated ventricular myocardium of rats conditioned by physical training. Basic Res. Cardiol. 70:495–507.PubMedCrossRefGoogle Scholar
  33. 33.
    Katz, A. M. 1970. Contractile proteins of the heart. Physiol. Rev. 50:63–158.PubMedGoogle Scholar
  34. 34.
    Kissling, G. 1980. Oxygen consumption and substrate uptake of the hypertrophied rat heart in situ. Basic Res. Cardiol. 75:185–192.PubMedCrossRefGoogle Scholar
  35. 35.
    Kissling, G., Gassenmaier, T., Wendt-Gallitelli, M. F., and Jacob, R. 1977. Pressure-volume relations, elastic modulus, and contractile behavior of the hypertrophied left ventricle of rats with Goldblatt II hypertension. Pfluegers Arch. 369:213–221.CrossRefGoogle Scholar
  36. 36.
    Kissling, G., and Wendt-Gallitelli, M. F. 1977. Dynamics of the hypertrophied left ventricle in the rat. Effects of physical training and chronic pressure load. Basic Res. Cardiol. 72:178–183.PubMedCrossRefGoogle Scholar
  37. 37.
    Linzbach, A. J. 1948. Herzhypertrophie und kritisches Herzgewicht. Klin. Wochenschr. 26:459–463.PubMedCrossRefGoogle Scholar
  38. 38.
    Linzbach, A. J., and Kyrieleis, C. 1968. Strukturelle Analyse chronisch insuffizienter menschlicher Herzen. In: H. Reindell, J. Keul, and E. Doll (eds.), Herzinsuffizienz, Pathophysiologie und Klinik, pp. 11–19. Georg Thieme, Stuttgart.Google Scholar
  39. 39.
    Lompre, A.-M., Schwartz, K., d’Albis, A., Lacombe, G., van Thiem, N., and Swynghedauw, B. 1979. Myosin isoenzyme redistribution in chronic heart overload. Nature 282:105–107.PubMedCrossRefGoogle Scholar
  40. 40.
    Maron, B. J., Ferrans, V. J., and Roberts, W. C. 1975. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am. J. Pathol. 79:387–434.PubMedGoogle Scholar
  41. 41.
    Maughan, D., Low, E., Litten, R., Brayden, J., and Alpert, N. R. 1979. Calcium-activated muscle from hypertrophied rabbit hearts. Circ. Res. 44:279–287.PubMedCrossRefGoogle Scholar
  42. 42.
    Medugorac, I. 1980. Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc. Res. 14:551–554.PubMedCrossRefGoogle Scholar
  43. 43.
    Medugorac, I., and Jacob, R. 1976. Concentration and adenosinetrophosphatase activity of left ventricular actomyosin in Goldblatt rats during the compensatory stage of hypertrophy. Z. Physiol. Chem. 357:1495–1503.CrossRefGoogle Scholar
  44. 44.
    Meerson, F.Z. 1969. Hyperfunktion, Hypertrophie and Insuffizienz des Herzens. VEB Volk und Gesundheit, Berlin.Google Scholar
  45. 45.
    Meerson, F. Z. 1976. Insufficiency of hypertrophied heart. Basic Res. Cardiol. 71:343–354.PubMedCrossRefGoogle Scholar
  46. 46.
    Meerson, F. Z., and Breger, A. M. 1977. The common mechanism of the heart’s adaptation and deadaptation: Hypertrophy and atrophy of the heart muscle. Basic Res. Cardiol. 72:228–234.PubMedCrossRefGoogle Scholar
  47. 47.
    Page, E., McCallister, L. P., and Power, B. 1971. Stereological measurements of cardiac ultrastructures implicated in excitaton-contraction coupling (sarcotubulus and T-system). Proc. Natl. Acad. Sci. U.S.A. 68:1465–1466.PubMedCrossRefGoogle Scholar
  48. 48.
    Penpargkul, S., Malhotra, A., Schaible, T., and Scheuer, J. 1980. Cardiac contractile proteins and sarcoplasmic reticulum in hearts of rats trained by running. J. Appl. Physiol. 48:409–413.PubMedGoogle Scholar
  49. 49.
    Pette, D., and Heilmann, C. 1977. Transformation of morphological, functional and metabolic properties of fast-twitch muscle as induced by long-term electrical stimulation. Basic Res. Cardiol. 72:247–253.PubMedCrossRefGoogle Scholar
  50. 50.
    Rabinowitz, M., and Zak, R. 1975. Mitochondria and cardiac hypertrophy. Circ. Res. 36:367–376.PubMedCrossRefGoogle Scholar
  51. 51.
    Rupp, H. 1980. Cooperative effects of calcium on myofibrillar ATPase of normal and hypertrophied heart. Basic Res. Cardiol. 75:157–162.PubMedCrossRefGoogle Scholar
  52. 52.
    Rupp, H. 1982. Calcium-dependent activation of cardiac myofibrils: The mechanisms that modulate myofibrillar ATPase and tension and their significance for heart function. In: E. Chazov, V. Smirnov, and N. S. Dhalla (eds.), Advances in Myocardiology, Volume 3, pp. 455–466. Plenum Medical Book Company, New York.Google Scholar
  53. 53.
    Sack, D. W., Cooper, G., and Harrison, C. E. 1977. The role of Ca2 ions in the hypertrophied myocardium. Basic Res. Cardiol. 72:268–273.PubMedCrossRefGoogle Scholar
  54. 54.
    Scheuer, J., and Bhan, A. K. 1979. Cardiac contractile proteins. Circ. Res. 45:1–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Sonnenblick, E. H. 1970. Contractility of cardiac muscle. Circ. Res. 27:479–481.PubMedCrossRefGoogle Scholar
  56. 56.
    Spann, J. F., Jr., Buccino, R. A., Sonnenblick, E. H., and Braunwald, E. 1967. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ. Res. 21:341–354.PubMedCrossRefGoogle Scholar
  57. 57.
    Strauer, B. E. 1980. Hypertensive Heart Disease. Springer, Berlin Heidelberg, New York.CrossRefGoogle Scholar
  58. 58.
    Swynghedauw, B., and Leger, J. J. 1975. A new myosin molecule in heart overloading. A stimulating working hypothesis. In: Abstract Volume, International Study Group for Research in Cardiac Metabolism European Section, Brussels, p. 69.Google Scholar
  59. 59.
    Swynghedauw, B., Schwartz, K., and Leger, J. J. 1977. Cardiac myosin. Phylogenic and pathological changes. Basic Res. Cardiol. 72:254–260.PubMedCrossRefGoogle Scholar
  60. 60.
    Ullrich, K. J., Riecker, G., and Kramer, K. 1954. Das Druckvolumendiagramm des Warmbluterherzens. Pfluegers. Arch. 259:481–498.CrossRefGoogle Scholar
  61. 61.
    Wendt-Gallitelli, M. F., Ebrecht, G., and Jacob, R. 1979. Morphological alterations and their functional interpretation in the hypertrophied myocardium of Goldblatt hypertensive rats. J. Mol. Cell. Cardiol. 11:275–287.PubMedCrossRefGoogle Scholar
  62. 62.
    Wikman-Coffelt, J., Parmley, W. W., and Mason, D. T. 1979. The cardiac hypertrophy process: Analyses of factors determining pathological vs. physiological development. Circ. Res. 45:697–707.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • R. Jacob
    • 1
  • G. Kissling
    • 1
  • G. Ebrecht
    • 1
  • C. Holubarsch
    • 1
  • I. Medugorac
    • 1
  • H. Rupp
    • 1
  1. 1.Physiological Institute (II)University of TübingenTübingenFederal Republic of Germany

Personalised recommendations