Advertisement

The Effect of Experimentally Induced Myocardial Ischemia on the Norepinephrine Metabolism of the Dog Heart

  • I. Préda
  • P. Kárpáti
  • M. Sebeszta
  • Z. Antalóczy

Abstract

Myocardial ischemia is known to provoke an excess in circulating norepinephrine and thus be related to an increased irritability of the heart. In the present experiments, we studied the norepinephrine and potassium content, oxygen tension, and pH values of the effluent of coronary sinus after thoracotomy and catheter placement into the coronary sinus. Once a steady state was reaached, the measurements were repeated in the fifth, tenth, 20th, and 60th minutes of experimental myocardial ischemia provoked by coronary ligation of the left anterior descending coronary artery. The parameters obtained were compared to the corresponding values measured in the peripheral vessels. The results indicate an increased release and probably an increased turnover of norepinephrine in the ischemic myocardium. The role of metabolism acidosis in the changes in norepinephrine metabolism was suggested. It is assumed that intracellular acidosis is involved in the enhanced accumulation and release of norepinephrine in the damaged myocardium and that an increase of norepinephrine concentration in the myocardium may be considered a risk factor in supporting heart function.

Keywords

Myocardial Ischemia Coronary Sinus Coronary Occlusion Catecholamine Concentration Noradrenaline Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlquist, R. P. 1948. A study of adrenotropic receptors. Am. J. Physiol. 153:586–600.PubMedGoogle Scholar
  2. 2.
    Allen, J. D., James, R. G. G., McNamee, B. T., Shanks, R. G., and Pantridge, J. F. 1974. Adrenaline-induced lignocaine-resistant dysrhythmias in experimental myocardial infarction. Am. Heart J. 87:21–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Angelakos, E. T., King, M. P., and Millard, R. W. 1969. Regional distribution of catecholamines in the hearts of various species. Ann. N.Y. Acad. Sci. 156:219–240.PubMedCrossRefGoogle Scholar
  4. 4.
    Bensome, S. A., and Berger, J. M. 1971. Specific granules in mammalian and non-mammalian vertebrate cardiocytes. Methods Achiev. Exp. Pathol. 5:173–213.Google Scholar
  5. 5.
    Case, R. B., Nasser, M. G., and Crampton, R. S. 1969. Biochemical aspects of early myocardial ischemia. Am. J. Cardiol. 24:766–775.PubMedCrossRefGoogle Scholar
  6. 6.
    Corday, E., Basiko, V., and Lang, T-W. 1965. Vasopressor treatment of cardiogenic shock. In: L. E. Mills and J. H. Moyer (eds.) Shock and Hypotension; Pathogenesis and Treatment, pp. 526–536. Grune & Stratton, New York.Google Scholar
  7. 7.
    Cummings, J. R. 1960. Electrolyte changes in heart tissue and coronary arterial and venous plasma following coronary occlusion. Circ. Res. 8:865–870.PubMedCrossRefGoogle Scholar
  8. 8.
    Ekholm, R., Kerstell, J., Olsson, R., Rudenstam, C. M., and Svandorg, A. 1968. Morphological and biochemical studies of dog heart mitochondria after short periods of ischemia. Am. J. Cardiol. 22:312–318.PubMedCrossRefGoogle Scholar
  9. 9.
    Harris, A. S., Estandia, A., and Tillotson, R. F. 1951. Ventricular ectopic rhythms and ventricular fibrillation following cardiac sympathectomy and coronary occlusion. Am. J. Physiol. 165:505–512.PubMedGoogle Scholar
  10. 10.
    Hayasky, K. D., and Penney, D. P. 1969. Catecholamine metabolism in early myocardial infarction. Circulation 40(Suppl.):113.CrossRefGoogle Scholar
  11. 11.
    Herman, M. V., Elliott, W. C, and Gorlin, R. 1967. An electrocardiographic, anatomic and metabolic study of zonal myocardial ischaemia in coronary heart disease. Circulation 35:834–846.PubMedCrossRefGoogle Scholar
  12. 12.
    Iversen, L. L. 1963. The uptake of noradrenaline by the isolated perfused rat heart. Br. J. Pharmacol. 21:523–537.Google Scholar
  13. 13.
    Jewitt, D. E., and Croxon, R. 1971. Practolol in the management of cardiac dysrhythmias following myocardial infarction and cardiac surgery. Postgrad. Med. J. 47(Suppl.):25–29.Google Scholar
  14. 14.
    Jewitt, D. E., Mercer, C. J., Ried, D., Valori, C, Thomas, M., and Shillingford, F. P. 1969. Free noradrenaline and adrenaline excretion in relation to the development of cardiac arrhythmias and heart failure in patients with acute myocardial infarction. Lancet 1:635–641.PubMedCrossRefGoogle Scholar
  15. 15.
    Kárpáti, P., Préda, L, and Endröczi, E. 1973. Norepinephrine metabolism of heart and hypothalamic tissue in acidosis of the rat. Acta Physiol. Acad. Sci. Hung. 43:315–320.PubMedGoogle Scholar
  16. 16.
    Kárpáti, P., Préda, I., and Endröczi, E. 1974. Effect of acidosis and noradrenaline infusion on 14C noradrenaline uptake by the rat myocardium. Acta Physiol. Acad. Sci. Hung. 45:109–114.PubMedGoogle Scholar
  17. 17.
    Kárpáti, P., Préda, L, Kenedi, P., Kékes, E., and Langermann, J. 1972. Acid-base and blood gas examinations after experimental coronary ligature. Cardiol. Hung. 1:59–63.Google Scholar
  18. 18.
    Khan, M., Hamilton, J. T., and Manning, G. W. 1972. Protective effect of beta adreno-receptor blockade in experimental coronary occlusion in conscious dogs. Am. J. Cardiol. 30:832–837.PubMedCrossRefGoogle Scholar
  19. 19.
    Lukomsky, P. E., and Oganov, R. G. 1972. Blood plasma catecholamines and their urinary excretion in patients with acute myocardial infarction. Am. Heart J. 83:182–188.PubMedCrossRefGoogle Scholar
  20. 20.
    Maroko, P. R., Kjekshus, J. K., Sobel, B. E., Watanabe, T., Covell, J. W., Ross, J., and Braunwald, E., 1971. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Marshall, R. J., Parrat, J. R., and Pharm, B. 1973. The effect of noradrenaline on blood flow and oxygen consumption in normal and ischaemic areas of myocardium. Am. Heart J. 86:653–662.CrossRefGoogle Scholar
  22. 22.
    Moore, R. M., and Greenberg, M. M. 1937. Acid production in the functioning heart under conditions of ischemia and of congestion. Am. J. Physiol. 118:217–224.Google Scholar
  23. 23.
    Nelson, P. G. 1970. Effect of heparin on serum free fatty acids, plasma catecholamines and the incidence of arrhythmias following acute myocardial infarction. Br. Med. J. 3:735–737.PubMedCrossRefGoogle Scholar
  24. 24.
    Obeid, A., Smulyan, H., Gilbert, R., and Eich, R. 1972. Regional metabolic changes in the myocardium following coronary ligation in dogs. Am. Heart J. 83:189–196.PubMedCrossRefGoogle Scholar
  25. 25.
    Préda, I., Kárpáti, P., and Endröczi, E., 1975. Myocardial noradrenaline uptake after coronary occlusion in the rat. Acta Physiol. Acad. Sci. Hung. 46:99–106.PubMedGoogle Scholar
  26. 26.
    Préda, L, Kárpáti, P., and Endröczi, E. 1980. The effect of acidosis and coronary occlusion on the noradrenaline uptake of the rat heart. In: Proceedings of the International Union of Physiological Sciences, Budapest, Volume 14, p. 649.Google Scholar
  27. 27.
    Regan, T. J., Harman, M. A., Lehan, P. H., Burke, W. M., and Oldewurten, H. A. 1967. Ventricular arrhythmias and K transfer during myocardial ischemia and intervention with procaine amide, insulin or glucose solution. J. Clin. Invest. 46:1657–1668.PubMedCrossRefGoogle Scholar
  28. 28.
    Richardson, J. A. 1963. Plasma catecholamine concentrations in acute infarction. In: W. Lihoff and J. H. Moyer (eds.) Coronary Heart Disease, pp. 273–277. Grune & Stratton, New York.Google Scholar
  29. 29.
    Sebeszta, M., and Coraboeuf, E. 1980. The importance of potassium conductance in the initiation of slow action potentials in guinea-pig papillary muscle. In: Proceedings of the International Union of Physiological Sciences, Budapest, Vol. 14, p. 691.Google Scholar
  30. 30.
    Shea, T. M., Watson, E., Piotrowski, S. F., Dermaksian, G., and Case, R. B. 1962. Anaerobe myocardial metabolism. Am. J. Physiol. 203:463.PubMedGoogle Scholar
  31. 31.
    Staszewska-Barczak, J., and Ceremuzynsky, L. 1968. The continuous estimation of catecholamine release in the early stages of myocardial infarction. Clin. Sci. 34:531–539.PubMedGoogle Scholar
  32. 32.
    Valori, C, Thomas, M., and Shillingford, J. P. 1967. Free noradrenaline and adrenaline excretion in relation to clinical syndromes following myocardial infarction. Am. J. Cardiol. 20:605–617.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • I. Préda
    • 1
  • P. Kárpáti
    • 1
  • M. Sebeszta
    • 1
  • Z. Antalóczy
    • 1
  1. 1.Second Medical Clinic of Postgraduate Medical SchoolBudapestHungary

Personalised recommendations