Comparative Changes in the 32P Labeling of Adenine and Uracil Nucleotides in the Hypertrophying Rat Heart

  • A. Ray
  • J. Aussedat
  • J. Olivares
  • A. Rossi


The turnover of cardiac adenine and uracil nucleotides was studied in the hypertrophying rat heart by means of the kinetics of incorporation of labeled phosphate into the α-phosphate groups of nucleotides. Cardiac hypertrophy was induced either by chronic isoproterenol treatment (5 mg-kg-1 body wt. daily, s.c.) or by abdominal aortic constriction. In both experimental models, although the labeling of α-P groups of adenine nucleotides was at first unmodified, the incorporation of [32P]Phosphate into uracil nucleotides was accelerated early and the stimulation maintained for several days. The intramyocardial concentration of UTP and uracil nucleotides rose during the early phase of hypertrophy, while the ATP and adenine nucleotide pools were depleted. All of these alterations were more pronounced in isoproterenol-treated animals than in those with aortic stenosis. In this experimental model (isoproterenol treatment), the hypertrophy develops faster and is accompanied by a larger increase in cardiac RNA concentration. Thus, the increase in the rate of synthesis of uracil nucleotides may be interpreted as an adaptative change of nucleotide metabolism in response to an increased requirement of precursors for RNA synthesis. The possible limiting role of pyrimidine nucleotides in the hypertrophic process is discussed.


Aortic Stenosis Cardiac Hypertrophy Adenine Nucleotide Aortic Constriction Nucleotide Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlett, G. R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468.PubMedGoogle Scholar
  2. 2.
    Buecher, T. 1947. Uber ein phosphatubertragendes Garungsferment. Biochem. Biophys. Acta 1:292–314.CrossRefGoogle Scholar
  3. 3.
    Fanburg, B. L., Matsushita, S., and Raben M. S. 1973. Nucleic acid metabolism in cardiac hypertrophy. In: N. S. Dhalla (ed.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 3: Myocardial Metabolism, pp. 577–588. University Park Press, Baltimore.Google Scholar
  4. 4.
    Fleckenstein, A., Doring, H. G., and Leder, O. 1969. The significance of high-energy phosphate exhaustion in the etiology of isoproterenol-induced cardiac necrosis and its prevention by iproveratril, compound D 600 or prenylamine. In: M. Lamarche and R. Royer (eds.), International Symposium on Drugs and Metabolism of Myocardium and Striated Muscle, Nancy, France, pp. 11–12.Google Scholar
  5. 5.
    Fizel, A., and Fizelova, A. 1971. Cardiac hypertrophy and heart failure: Dynamics of change in high-energy phosphate compounds, glycogen and lactic acid. J. Mol. Cell. Cardiol. 2:187–192.PubMedCrossRefGoogle Scholar
  6. 6.
    Furchgott, R. F., and De Gubareff, J. 1956. The determination of inorganic phosphate and creatine phosphate in tissue extract. J. Biol. Chem. 223:377–388.PubMedGoogle Scholar
  7. 7.
    Goldthwait, D. A. 1957. Mechanisms of synthesis of purine nucleotides in heart muscle extracts. J. Clin. Invest. 36:1572–1578.PubMedCrossRefGoogle Scholar
  8. 8.
    Hattori, E., Yatsuki, K., Miyazaki, T., Sata, T., and Nakamura, M. 1969. Adenine nucleotides of myocardium from rats treated with isoproterenol and for Mg or K deficiency. Jpn. Heart J. 10:218–224.PubMedCrossRefGoogle Scholar
  9. 9.
    Jaworek, D., Gruber, W., and Bergmeyer, H. U. 1974. Adenosine-5′-triphosphate. Determination with 3-phosphoglycerate kinase. Methods Enzymat. Anal. 4:2097–2101.Google Scholar
  10. 10.
    Kako, K. 1965. Biochemical changes in the rat myocardium induced by isoproterenol. Can. J. Physiol. Pharmacol. 43:541–549.PubMedCrossRefGoogle Scholar
  11. 11.
    Keppler, D., Rudigier, J., and Decker, K. 1970. Enzymatic determination of uracil nucleotides in tissues. Anal. Biochem. 38:105–114.PubMedCrossRefGoogle Scholar
  12. 12.
    Koide, T., and Rabinowitz, M. 1969. Biochemical correlates of cardiac hypertrophy. II: Increased rate of RNA synthesis in experimental cardiac hypertrophy in the rat. Circ. Res. 24:9–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Matsushita, S., and Fanburg, B. L. 1970. Pyrimidine nucleotide synthesis in the normal and hypertrophying heart. Relative importance of the de novo and salvage pathways. Circ. Res. 27:415–428.PubMedCrossRefGoogle Scholar
  14. 14.
    Meerson, R. Z., and Pomoinitsky, V. D. 1972. The role of high-energy phosphate compounds in the development of cardiac hypertrophy. J. Mol. Cell. Cardiol. 4:571–598.PubMedCrossRefGoogle Scholar
  15. 15.
    Munro, H. N., and Fleck, A. 1966. The determination of nucleic acids. Methods Biochem. Anal. 14:113–176.PubMedCrossRefGoogle Scholar
  16. 16.
    Nair, G. K., Cutilletta, A. F., Zak, R., Koide, T., and Rabinowitz, M. 1968. Biochemical correlates of cardiac hypertrophy. I. Experimental model; changes in heart weight, RNA content, and nuclear RNA polymerase activity. Circ. Res. 23:451–462.PubMedCrossRefGoogle Scholar
  17. 17.
    Olivares, J., Ray, A., Aussedat, J., Verdys, M., and Rossi, A. 1980. Increased myocardial pyrimidine nucleotide synthesis in isoproterenol-induced cardiac hypertrophy in rats. Biochem. Biophys. Res. Commun. 95:367–373.PubMedCrossRefGoogle Scholar
  18. 18.
    Rossi, A. 1975. 32P labelling of the nucleotides in α-position in the rabbit heart. J. Mol. Cell. Cardiol. 7:891–906.PubMedCrossRefGoogle Scholar
  19. 19.
    Rossi, A. 1975. Incorporation of uridine by the perfused rabbit heart. Life Sci. 16:1121–1132.PubMedCrossRefGoogle Scholar
  20. 20.
    Rossi, A., Mandel, P., and Dessaux, G. 1972. Cinétique de renouvellement du phosphate a des nucleotides libres dans le tissu myocardique de rat. Arch. Int. Physiol. Biochem. 80:59–77.CrossRefGoogle Scholar
  21. 21.
    Rossi, A., Olivares, J., Aussedat, J., and Ray, A. 1979. Stimulation by isoproterenol of myocardial pyrimidine nucleotides synthesis in rats. J. Mol. Cell. Cardiol. 11:50.Google Scholar
  22. 22.
    Rossi, A., Olivares, J., Aussedat, J., and Ray, A. 1980. Increased uracil nucleotide metabolism during the induction of cardiac hypertrophy by β-stimulation in rats. Basic Res. Cardiol. 75:139–142.PubMedCrossRefGoogle Scholar
  23. 23.
    Takenaka, F., and Higuchi, M. 1974. High-energy phosphate contents of subepicardium and subendocardium in the rat treated with isoproterenol and some other drugs. J. Mol. Cell. Cardiol. 6:123–135.PubMedCrossRefGoogle Scholar
  24. 24.
    Wollenberger, A., Ristau, O., and Schoffa, G. 1960. Eine einfache Tecknik der extrem schnellen Abkuhlung grosserer Gewebstucke. Pfluegers Arch. 270:339–412.Google Scholar
  25. 25.
    Zimmer, H. G., and Gerlach, E. 1974. Effect of beta-adrenergic stimulation on myocardial adenine nucleotide metabolism. Circ. Res. 35:536–543.PubMedCrossRefGoogle Scholar
  26. 26.
    Zimmer, H. G., and Gerlach, E. 1977. Studies on the regulation of the biosynthesis of myocardial adenine nucleotides. In: N. M. Muller, E. Kaiser, and J. E. Seegmiller (eds.), Purine Metabolism in Man, pp. 40–49. Plenum Press, New York.CrossRefGoogle Scholar
  27. 27.
    Zimmer, H. G., Steinkopff, G., and Gerlach, E. 1972. Changes of protein synthesis in the hypertrophying rat heart. Pfluegers Arch 336:311–325.CrossRefGoogle Scholar
  28. 28.
    Zimmer, H. G., Steinkopff, G., Ibel, H., and Koschine, H. 1980. Is the ATP decline a signal for stimulating protein synthesis in isoproterenol-induced cardiac hypertrophy? J. Mol. Cell. Cardiol. 12:421–426.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • A. Ray
    • 1
  • J. Aussedat
    • 1
  • J. Olivares
    • 1
  • A. Rossi
    • 1
  1. 1.Laboratory of Animal PhysiologyScientific and Medical University of GrenobleGrenoble CedexFrance

Personalised recommendations