DNA Synthesis in Atrial Myocytes of Rats with Aortic Stenosis

  • P. P. Rumyantsev


Indices of labeled myonuclei have been determined in hypertrophying hearts of adult Wistar rats by autoradiography after single-pulse or repeated [3H]thymidine administration. After single [3H]thymidine injections, only 1.36 ± 0.66 and 1.32 ± 0.87% labeled myonuclei were observed in the left and right atria, respectively. In the experiments with multiple [3H]thymidine administration, the first injection of this precursor was given on the seventh day after aortic constriction; thereafter, 30 or 42 injections of [3H]thymidine were given at 12-hr intervals up to the fourth postoperation week. Following 30 repeated [3H]thymidine injections, 29.75 ± 4.65 and 16.78 ± 3.33% labeled myonuclei were visible in left and right atrial muscle cells, respectively. The cumulative labeling index for left atrium myocytes clearly correlates (r = 0.65–0.73) with an increase in the weight of the heart. Increase in heart weight to more than 160% of controls corresponds to [3H]thymidine labeling of 38.06 ± 4.65 and 21.67 ± 4.16% in left and right atrial myocytes, respectively, whereas in hearts weighing less than 140% of controls, [3H]thymidine labels only 8.20 ± 1.93% in the left atrium and 3.94 ± 1.57% in the right one. In the ventricles, cumulative indices of myonuclear labeling do not exceed 0.217 ± 0.11% even in hearts weighing nearly 180% of controls. Cumulative frequencies of labeling for AV system myocytes are almost ten times higher (1.97 ± 0.38). These results, together with our data concerning mycocardial infarction (27–29,31), make it necessary to reconsider the role of cardiomyocyte hyperplasia in different experimental and pathological conditions, paying special attention to the proliferative behavior of the atrial muscle cells. DNA synthesis in atrial myocytes seems to be stimulated by heart hyperfunction.


Left Atrium Ventricular Myocytes Left Coronary Artery Heart Weight Aortic Constriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abinder, A. A., Olbinskaya, L. L, Kitaeva, I. T., Beskrovnova, N. N., Yankin, V. V., and Antonenko, N. I. 1976. [Experimental and clinical data on the state of the atria under post-infarction cardiosclerosis.] Kardiologiia 16(7):88–93.PubMedGoogle Scholar
  2. 2.
    Adler, C. P. 1972. Morphologische Grundlagen der Herzhypertrophie und des Herzwachstums. Med. Welt. 23:477–484.PubMedGoogle Scholar
  3. 3.
    Adler, C. P., and Costabel, U. 1975. Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics. In: A. Fleckenstein and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Volume 6: Pathophysiology and Morphology of Myocardial Cell Alteration, pp. 343–355. University Park Press, Baltimore.Google Scholar
  4. 4.
    Aslibekian, I. S., Borovkov, A. I., Olbinskaya, L. I., and Kitaeva, I. T. 1975. [Electro-kymographical reflection of disturbances of intracardiac hemodynamics in patients with postinfarction cardiosclerosis.] Krovoobrashchenie 8(3):44–49.Google Scholar
  5. 5.
    Bencosme, S. A., and Berger, G. M. 1976. Specific granules in mammalian and non-mammalian cardiomyocytes. Methods Achiev. Exp. Pathol. 5:173–213.Google Scholar
  6. 6.
    Berger, G. M., and Rona, G. 1971. Functional and fine structural heterogeneity of atrial cardiocytes. Methods Achiev. Exp. Pathol. 5:540–590.PubMedGoogle Scholar
  7. 7.
    Beznak, M. 1953. The restoration of cardiac hypertrophy and blood pressure in hypophy-sectomized rats with large doses of LHP or growth hormone. J. Physiol. (Lond.) 120:23P.Google Scholar
  8. 8.
    Bishop, S. P. 1973. Effect of aortic stenosis on myocardial cell growth, hyperplasia and ultrastructure in neonatal dogs. In: N. S. Dhalla (ed.). Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 3: Myocardial Metabolism, pp. 637–656. University Park Press, Baltimore.Google Scholar
  9. 9.
    Bishop, S. P., and Meisen, L. R. 1976. Myocardial necrosis, fibrosis and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Circ. Res. 39:238–245.PubMedCrossRefGoogle Scholar
  10. 10.
    Challice, C. E. 1971. Functional morphology of the specialized tissues of the heart. In: E. Bajusz (ed.), Functional Morphology of the Heart, pp. 121–172. Karger, Basel.Google Scholar
  11. 11.
    Dowell, R. T., and McManus, R. E. III 1978. Pressure-induced cardiac enlargement in neonatal and adult rats. Left ventricular functional characteristics and evidence of cardiac muscle cell proliferation in the neonate. Circ. Res. 42:303–310.PubMedCrossRefGoogle Scholar
  12. 12.
    Hollenberg, M., Honbo, N., and Samorodin, A. J. 1976. Effects of hypoxia on cardiac growth in neonatal rats. Am. J. Physiol. 231:1445–1450.PubMedGoogle Scholar
  13. 13.
    Hudgson, P., and Field, E. J. 1973. Regeneration of muscle. In: G. H. Bourne (ed.), The Structure and Function of Muscle. Vol. 2, Pt. II, pp. 312–363. Academic Press, London, New York.Google Scholar
  14. 14.
    Klika, E., and Jarkovska, D. 1976. The Myocardium of the Intrapulmonary Veins in Mammals. Academia, Praha.Google Scholar
  15. 15.
    Kogan, A. Ch. 1961. [A new simple method of controlled constriction of the renal and other arteries in chronic experiment in small animals.] Biull. Eksp. Biol. Med. 51:112–114.Google Scholar
  16. 16.
    Kostirev, O. A., and Leontieva, T. A. 1973. [Autoradiographic study of the DNA synthesis in muscle and connective tissue heart cells injured by isopropilnoradrenalin.] Biull. Eksp. Biol. Med. 76:108–110.Google Scholar
  17. 17.
    Legato, M. J. 1973. Ultrastructure of the atrial, ventricular and Purkinje cells with special references to the genesis of arrhythmias. Circulation 47:178–189.PubMedCrossRefGoogle Scholar
  18. 18.
    Makolkin, V. I., Shatichin, A. I., Abbakumov, S. A., and Leshkova, M. I. 1971. [Diagnostics of the atrial pathology using bloodless instrumental methods.] Kardiologiia 2(7): 147–156.Google Scholar
  19. 19.
    McMinn, R. M. 1969. Tissue Repair. Academic Press, New York.Google Scholar
  20. 20.
    Meerson, F. Z. 1975. [Heart Adaptation to the Overload and Heart Insufficiency.] Nauka, Moscow.Google Scholar
  21. 21.
    Neffgen, G. F., and Korecky, B. 1972. Cellular hyperplasia and hypertrophy in cardiom-egalies induced by anemia in young and adult rats. Circ. Res. 30:104–113.PubMedCrossRefGoogle Scholar
  22. 22.
    Oberpriller, J. O., and Oberpriller, J. C. 1974. Response of the adult newt ventricle to injury. J. Exp. Zool. 187:249–253.PubMedCrossRefGoogle Scholar
  23. 23.
    Oberpriller, J. O., and Oberpriller, J. C. 1977. Modified hamster atrial cardiac muscle cells isolated in the anterior chamber of the eye. J. Mol. Cell. Cardiol. 9:1013–1017.PubMedCrossRefGoogle Scholar
  24. 24.
    Pfitzer, P. 1972. Die karyologischen Grundlagen der Hypertrophic Verh. Dtsch. Ges. Kreislaufforsch. 38:22–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Pfitzer, P., and Schulte, H. D. 1972. The nuclear DNA content of myocardial cells of monkeys as a model for the polyploidization in the human heart. In: E. I. Goldsmith and J. Moor-Jankowski (eds.), Medical Primatology 1972. Proceedings of the Third Conference on Experimental Medicine and Surgery in Primates, Lyon 1972, Part I, pp. 379–389. Karger, Basel.Google Scholar
  26. 26.
    Polezhaev, L. V. 1972. Organ Regeneration in Animals. Charles C Thomas, Springfield, Illinois.Google Scholar
  27. 27.
    Rumyantsev, P. P. 1974. Ultrastructural reorganization, DNA synthesis and mitotic division of myocytes in atria of rats with left ventricle infarction. An electron microscopic and autoradiographic study. Virchows Archiv. [Cell. Pathol.] 15:357–378.Google Scholar
  28. 28.
    Rumyantsev, P. P. 1977. Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int. Rev. Cytol. 51:187–273.CrossRefGoogle Scholar
  29. 29.
    Rumyantsev, P. P. 1979. Some comparative aspects of myocardial regeneration. In: A. Mauro (ed.), Muscle Regeneration, pp. 335–355. Raven Press, New York.Google Scholar
  30. 30.
    Rumyantsev, P. P. 1981. New comparative aspects of myocardial regeneration with special reference to cardiomyocyte proliferative behavior. In: R. O. Becker (ed.), Mechanisms of Growth Control, pp. 311–342. Charles C Thomas, Springfield, Illinois.Google Scholar
  31. 31.
    Rumyantsev, P. P., and Kassem, A. M. 1976. Cumulative indices of DNA synthesizing myocytes in different compartments of the working myocardium and conductive system of the rat’s heart muscle following extensive left ventricle infarction. Virchows Archiv. [Cell. Pathol.] 20:329–342.Google Scholar
  32. 32.
    Rumyantsev, P. P., and Mirakyan, V. O. 1968. [Increased activity of DNA synthesis and mitoses in rat atrial muscle cells under ventricular myocardial infarction and local injuries of auricles.] Tsitologia 10:1276–1287.Google Scholar
  33. 33.
    Rumyantsev, P. P., and Mirakyan, V. O. 1968. Reactive synthesis of DNA and mitotic division in atrial heart muscle cells following ventricle infarction. Experientia 24:1234–1235.PubMedCrossRefGoogle Scholar
  34. 34.
    Sandritter, W., and Scomazzoni, G. 1964. Deoxyribonucleic acid content (Feulgen photometry) and dry weight (interference microscopy) of normal and hypertrophic heart muscle fibres. Nature 202:100–101.PubMedCrossRefGoogle Scholar
  35. 35.
    Schiaffino, S., Cantini, M., Bormioli, S. P., and Sartore, S. 1979. Heterogeneity of cardiac muscle cells in vivo and in vitro. In: A. Mauro (ed.), Muscle Regeneration, pp. 357–361. Raven Press, New York.Google Scholar
  36. 36.
    Steinert, W., Pfitzer, P., Friedrich, G., and Stoepel, K. 1974. DNS-Synthese im Herzen von Ratten mit renalem Hochdruck bei Langzeitinfusion von 3H-Thymidin. Beitr. Pathol. 153:165–177.PubMedCrossRefGoogle Scholar
  37. 37.
    Wachtlovâ, M., Mares, V., and Ostâdal, B. 1977. DNA synthesis in the ventricular myocardium of young rats exposed to intermittent high altitude (IHA) hypoxia. An autoradiographic study. Virchows Archiv. [Cell Pathol.] 24:335–342.Google Scholar
  38. 38.
    Zak, R. 1973. Cell proliferation during cardiac growth. Am. J. Cardiol. 31:211–219.PubMedCrossRefGoogle Scholar
  39. 39.
    Zak, R. 1974. Development and proliferative capacity of cardiac muscle cells. Circ. Res. 34–35(Suppl. 2):17–26.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • P. P. Rumyantsev
    • 1
  1. 1.Institute of Cytology of the Academy of Sciences of the USSRLeningradUSSR

Personalised recommendations