Advertisement

Lipopeptide Secondary Metabolites from the Phytopathogenic Bacterium Pseudomonas Syringae

  • Ingeborg Grgurina
Chapter

Abstract

Over the past 20 years or so, significant advances have been made in the study of the secondary metabolism of the widespread phytopathogenic Gram-negative bacterium Pseudomonas syringae. Interdisciplinary approach, which required the expertise of plant pathologists, chemists, biochemists and molecular biologists, led to the discovery of a new family of bioactive peptide secondary metabolites. The determination of their structures was pivotal for the investigations on the biosynthetic pathways, their relevance in the development of plant disease, and for the understanding of the molecular bases of their biological activities in plant, microbial and animal cells. In particular, the antibiotic activities of some of these compounds appear very interesting in the perspective of their utilization both in medicine and in agriculture. The goal of this chapter is to summarize the present knowledge in various areas of research on P. syringae peptide metabolites.

Keywords

Antifungal Activity Surf Actin Plant Pathol Lactone Macrocycle Haemolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adetuyi, F.C., Isogai, A., Di Giorgio, D., Ballio, A., and Takemoto, J.Y., 1995, Saprophytic Pseudomonas syringae strani M1 of wheat produces cyclic lipodepsipeptides, FEMS Microbiol. Lett. 131: 63–67.PubMedCrossRefGoogle Scholar
  2. Agner, G., Kaulin, Y.A., Gurney, P.A., Szabo, Z., Schagina, L.V., Takemoto, J.Y., and Blasko, K., 2000a, Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes, Bioel ectrochem. 52: 161–167.Google Scholar
  3. Agner, G., Kaulin, Y.A., Schagina, L.V., Takemoto, J.Y., and Blasko, K., 2000b, Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes, Biochim. Biophys. Acta 1466: 79–86.CrossRefGoogle Scholar
  4. Backman, P.A., and DeVay, J.E., 1971, Studies on the mode of action and biogenesis of the phytotoxin syringomycin, Physiol. Pathol. 1: 215–233.CrossRefGoogle Scholar
  5. Ballio, A., Barra, D., Bossa, F., Collina, A., Grgurina, I., Marino, G., Paci, M., Pucci, P., Segre, A., and Simmaco, M., 1991, Syringopeptins, new phytotoxic lipodepsipeptides of Pseudomonas syringae pv. syringae, FEBS Lett. 291: 109–112.PubMedCrossRefGoogle Scholar
  6. Ballio, A., Barra, D., Bossa, F., DeVay, J.E., Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., and Surico, G., 1988, Multiple forms of syringomycin, Physiol. Mol. Plant Pathol. 33: 493–496.CrossRefGoogle Scholar
  7. Ballio, A., Bossa, F., Camoni, L., Di Giorgio, D., Flamand, M.C., Maraite, H., Nitti, G., Pucci, P., and Scaloni, A., 1996, Structure of fuscopeptins, phytotoxic metabolites of Pseudomonas fuscovaginae, FEBS letters 381: 213–216.PubMedCrossRefGoogle Scholar
  8. Ballio, A., Bossa, F., Collina, A., Gallo, M., Iacobellis, N.S., Paci, M., Pucci, P., Scaloni, A., Segre, A., and Simmaco, M., 1990, Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringae pv. syringae, FEBS Lett. 269: 377–380.PubMedCrossRefGoogle Scholar
  9. Ballio, A., Bossa, F., Di Giorgio, D., Di Nola, A., Manetti, C., Paci, M., Scaloni, A., and Segre, A., 1995, Solution conformation of the Pseudomonas syringae pv. syringae phytotoxic lipodepsipeptide syringopeptin 25 A. Two-dimensional NMR, distance geometry and molecular dynamics, Eur, J. Biochem. 234: 747–758.Google Scholar
  10. Ballio, A., Bossa, F., Di Giorgio, D., Ferranti, P., Paci, M., Pucci, P., Scaloni, A., Segre, A., and Strobel, G.A., 1994a, Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins, FEBS Lett. 355: 96–100.PubMedCrossRefGoogle Scholar
  11. Ballio, A., Collina, A., Di Nola, A., Maneti, C., Paci, M., and Segre, A., 1994b, Determination of structure and conformation in solution of syringotoxin, a lipodepsipeptide from Pseudomonas syringae pv. syringae by 2D-NMR and molecular dynamics, Struct. Chem. 5: 43–50.CrossRefGoogle Scholar
  12. Bard, M. 1972, Biochemical and genetic aspects of nystation resistance in Saccharomyces cerevisiae, J. Bacteriol. 111: 649–657.PubMedGoogle Scholar
  13. Barè, S., Coiro, V.M., Scaloni, A., Di Nola, A., Paci, M., Segre, A.L., and Ballio, A., 1999, Conformations in solution of the fuscopeptins. Phytotoxic metabolites of Pseudomonas fuscovaginae, Eur. J. Biochem. 266: 1–10.CrossRefGoogle Scholar
  14. Batoko, H., de Kerchove d’Exaerde, A., Kinet, J-M., Bouharmont, J., Gage, R.A., Maraite, H., and Boutry, M., 1998, Modulation of plant plasma membrane H’-ATPase by phytotoxic lipodepsipeptide produced by the plant pathogen Pseudomonas fuscovaginae, Biochim. Biophys. Acta 1372: 216–226.Google Scholar
  15. Bender, C.L., Alarcón-Chaidez, F., and Gross, D.C., 1999, Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases, Microbiol. Mol. Biol. 63: 266–292.Google Scholar
  16. Bidwai, A.P., and Takemoto, J.Y., 1987, Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides, Proc. Natl. Acad. Sci. 84: 6755–6759.PubMedCrossRefGoogle Scholar
  17. Bidwai, A.P., Zhang, L., Bachmann, R.C., and Takemoto J.Y., 1987, Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin, Plant. Physiol. 83: 39–43.PubMedCrossRefGoogle Scholar
  18. Blasko, K., Schagina, L.V., Agner, G., Kaulin, Y.A., and Takemoto, J.Y., 1998, Membrane sterol composition modulates the pore forming activity of syringomycin E in human red blood cells, Biochim. Biophys. Acta 1373: 163–169.CrossRefGoogle Scholar
  19. Brodey, C.L., Rainey, B.P., Tester, M., and Johnstone, K., 1991, Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin, Mol. Plant-Microbe Interact. 4: 407–411.CrossRefGoogle Scholar
  20. Bradbury, J.F., 1986, Guide to Plant Pathogenic Bacteria, Kew CAB International Mycological Institute, London.Google Scholar
  21. Bull, C.T., Stack, J.P., and Smilanick, J.L., 1997, Pseudomonas syringae strain ESC-10 and ESC-11 survive in wounds on citrus and control green and blue molds of citrus, Biol. Control 8: 81–88.Google Scholar
  22. Bull, C.T., Wadsworth, M.L., Sorensen, K.M., Takemoto, J.Y., Austin, R.K., and Smilanick, J.L., 1998, Syringomycin E produced by biological control agens controls green mold on lemons, Biol. Control 12: 89–95.CrossRefGoogle Scholar
  23. Bultreys, A., and Gheysen, I., 1999, Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants, Appl. Environ. Microbiol. 65: 1904–1909.PubMedGoogle Scholar
  24. Camoni, L., Di Giorgio, D., Marra, M., Aducci, P., and Ballio, A., 1995, Pseudomonas syringae pv. Syringae phytotoxins reversibly inhibit the plasma membrane H+-ATPase and disrupt unilamellar liposomes, Biochem. Biophys.Res.Com. 214: 118–124.Google Scholar
  25. Che, F.S., Kasamo, K., Fuchuchi, N., Isogai, A., and Suzuki, A., 1992, Bacterial phytotoxins, syringomycin, syringostatin and syringotoxin, exert their effect on the plasma membrane hydrogen ion-ATPase partly by a detergent-like action and partly by inhibition of the enzyme, Physiol. Plant. 86: 518–524.CrossRefGoogle Scholar
  26. Chen, S.H., Sun, X., Boyer, R., Paschal, J., Zeckner, D., Current, W., Zweifel, M., and Rodriguez, M., 2000, Syntheses and biological evaluation of novel pseudomycin side-chain analogues, Part 2, Bioorg. Med. Chem. Letters 10: 2107–2110.CrossRefGoogle Scholar
  27. Cliften, P., Wang, Y., Mochizuchi, D., Miyakawa, T., Wangspa, R., Hughes, J., and Takemoto, J. Y., 1996, Syr2, a gene necessary for syringomycin growth inhibition of Saccharomyces cerevisiae, Microbiol. 142: 477–484.Google Scholar
  28. Coiro, V.M., Segre, A.L., Di Nola, A., Paci, M., Grottesi, A., Veglia, G., and Ballio, A., 1998, Solution conformation of the Pseudomonas syringae MSU 16H phytotoxic lipodepsipeptide pseudomycin A determined by computer simulations using distance geometry and molecular dynamics from NMR data, Eur. J. Biochem. 257: 449–456.PubMedCrossRefGoogle Scholar
  29. Conti, E., Stachelhaus, T., Marahiel, MA, and Brick, P., 1997, Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S, EMBO J. 16: 4171–4183.CrossRefGoogle Scholar
  30. Dalla Serra, M., Fagiuoli, G., Nordera, P., Bernhart, I., Della Volpe, C., Di Giorgio, D., Ballio, A., and Menestrina, G., 1999a, The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological membranes: a comparison of syringotoxin, syringomycin and two syringopeptins, Mol. Plant-Microbe Interact. 12: 391–400.PubMedCrossRefGoogle Scholar
  31. Dalla Serra, M., Bernhart, I., Nordera, P., Di Giorgio, D., Ballio, A., and Menestrina, G., 1999b, Conductive properties and gating of channels formed by syringopeptin 25 A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes, Mol. Plant-Microbe Interact. 12: 401–409.PubMedCrossRefGoogle Scholar
  32. De Lucca, A.J., Jacks, T.J., Takemoto, J.Y., Vinyard, B., Peter, J., Navarro, E., and Walsh, T.J., 1999, Fungal lethality, binding and cytotoxicity of syringomycin E., Antimicrob. Agents and Chemother. 43: 371–373.Google Scholar
  33. De Lucca, A.J., and Walsh, T.J., 1999, Antifungal peptides: novel therapeutic compounds against emerging pathogens, Antimicrob. Agents and Chemother. 1: 1–11.Google Scholar
  34. DeVay, J.E., Lukezic, F.L., Sinden, S.L., English, H., and Coplin, D.L., 1968, A biocide produced by pathogenic isolates of Pseudomonas syringae and its possible role in the bacterial canker of peach trees, Phytopathol. 58: 95–101.Google Scholar
  35. Di Giorgio, D., Camoni, L., and Ballio, A., 1994, Toxins of Pseudomonas syringae pv. syringae affect proton transport across the plasma membrane of maize, Physiol. Plant. 91: 741–746.CrossRefGoogle Scholar
  36. Di Giorgio, D., Camoni, L., Marchiafava, C., and Ballio, A., 1997, Biological activities of pseudomycin A, a lipodepsinonapeptide from Pseudomonas syringae MSU 16H, Phytochem. 45: 1385–1391.CrossRefGoogle Scholar
  37. Di Giorgio, D., Camoni, L., Mott, K.A., Takemoto, J.Y., and Ballio, A., 1996a, Syringopeptins, Pseudomonas syringae pv. syringae pytotoxins, resemble syringomycin in closing stomata, Plant Pathol. 45: 564–571.CrossRefGoogle Scholar
  38. Di Giorgio, D., Lavermicocca, P., Marchiafava, C., Camoni, L., Surico, G., and Ballio, A., 1996b, Effect of syringomycin E and syringopeptins on isolated plant mitochondria, Physiol. Mol. Plant Pathol. 48: 325–334.CrossRefGoogle Scholar
  39. Emanuele, M.C., Scaloni, A., Lavermicocca, P., Iacobellis, N.S., Camoni, L., Di Giorgio, D., Pucci, P., Paci, M., Segre, A., and Ballio, A., 1998, Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata, FEBS Lett. 433: 317–320.PubMedCrossRefGoogle Scholar
  40. Feigin, A.M., Schagina, L.V., Takemoto, J.Y., Teeter, J.H., and Brand, J.G., 1997, The effect of sterol on the sensitivity of membranes to the channel-forming antifungal antibiotic, syringomycin E., Biochim. Biophys. Acta 1324: 102–110.PubMedCrossRefGoogle Scholar
  41. Feigin, A.M., Takemoto, J.Y., Wangspa, R., Teeter, J.H., and Brand, J.G., 1996, Properties of voltage-gated ion channels formed by syringomycin E in planar lipid bilayers, J. Membr. Biol. 149: 41–47.PubMedCrossRefGoogle Scholar
  42. Flamand, M.C., Pelsser, S., Ewbank, E., and Maraite, H., 1996, Production of syringotoxin and other bioactive peptides by Pseudomonas fuscovaginae, Physiol. Mol. Plant Pathol. 48: 217–231.CrossRefGoogle Scholar
  43. Fogliano, V., Gallo, M., Vinale, F., Ritieni, A., Randazzo, G., Greco, M.L., Lops, R., and Graniti, A., 1999, Immunological detection of syringopeptins produced by Pseudomonas syringae pv. lachrymans, Physiol. Mol. Plant Pathol. 55: 255–261.CrossRefGoogle Scholar
  44. Fukuchi, N., Isogai, A., Nakayama, J., and Suzuki, A., 1990a, Structure of syringotoxin B, a phytotoxin produced by citrus isolates of Pseudomonas syringae pv. syringae, Agric. Biol. Chem. 54: 3377–3379.PubMedCrossRefGoogle Scholar
  45. Fukuchi, N., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K., and Suzuki, A., 1992a, Isolation and structural elucidation of syringostatins, phytotoxins produced by Pseudomonas syringae pv. syringae lilac isolate, J. Chem. Soc. Perkin Trans 1: 875–880.CrossRefGoogle Scholar
  46. Fukuchi, N., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K, Takemoto, J.Y., and Suzuki, A., 1992 b, Structure and stereochemistry of three phytoxins, syringomycin, syringotoxin and syringostatin, produced by Pseudomonas syringae pv. syringae, J. Chem. Soc. Perkin Trans. 1: 1149–1157.Google Scholar
  47. Fukuchi, N., Isogai, A., and Suzuki, A., 1991, Stereochemistry of syringostatin, syringomycin and syringotoxin, phytotoxins of Pseudomonas syringae pv. syringae, Agric. Biol. Chem. 55: 625–627.CrossRefGoogle Scholar
  48. Fukuchi, N., Isogai, A., Yamashita, S., Suyama, K., Takemoto, J.Y., and Suzuki, A., 1990b, Structure of phytotoxin syringomycin produced by sugar cane isolate of Pseudomonas syringae pv. syringae, Tet. Lett. 31: 1589–1592.CrossRefGoogle Scholar
  49. Gallo, M., Fogliano, V., Ritieni, A., Peluso, L., Greco, M.L., Lops, R., and Graniti, A., 2000, Immunoassessment of Pseudomonas syringae lipodepsipeptides (syringomycins and syringopeptins), Phytopathol. mediterr. 39: 410–416.Google Scholar
  50. Gardan, L., Shafif, H.,and Grimont, P.A.D., 1997, DNA relatedness among pathovars of P. syringae and rekated bacteria, in: Pseudomonas syringae Pathovars and Related Pathogens, K. Rudolph, T. J. Burr, J. W. Mansfield, D. Stead, A. Vivian and J. von Kietzell, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 445–448.CrossRefGoogle Scholar
  51. Gevers, W., Kleinkauf, H., and Lipmann, F., 1968, The activation of amino acids for biosynthesis of gramicidin S., Proc. Nat. Acad Sci. 60: 269–276.PubMedCrossRefGoogle Scholar
  52. Gonzalez, C.F., DeVay, J.E., and Wakeman, R.J., 1981, Syringotoxin: a phytotoxin unique to citrus isolates of Pseudomonas syringae, Physiol. Plant Pathol. 18, 41–50.Google Scholar
  53. Grgurina, I., Barca, A., Cervigni, S., Gallo, M., Scaloni, A., and Pucci, P., 1994, Relevance of chlorine-substituent for the antifugal activity of syringomycin and syringotoxin, metabolites of the phytopathogenic bacterium Pseudomonas syringae pv. syringae, Experientia 50: 130–133.PubMedCrossRefGoogle Scholar
  54. Grgurina, I., and Benincasa, M., 1994, Evidence of the non ribosomal biosynthetic mechanism in the formation of syringomycin and syringopeptin, bioactive lipodepsipeptides of the phytopathogenic bacterium Pseudomonas syringae pv. syringae, It. Biochem. Soc. Trans. 5: 143.Google Scholar
  55. Grgurina, I., Gross, D.C., Iacobellis, N.S., Lavermicocca, P., Takemoto, J.Y., and Benincasa, M., 1996, Phytotoxin production by Pseudomonas syringae pv. syringae: syringopeptin production by syr mutants defective in biosynthesis or secretion of syringomycin, FEMS Microbiol. Lett. 138: 35–39.CrossRefGoogle Scholar
  56. Grgurina, I., Iacobellis, N.S., Ippolito, C., and Curci, R., 1997b, Detection of Syringomycin in plant tissues infected with Pseudomonas syringae pv. syringae, in: Pseudomonas syringae Pathovars and Related Pathogens, K. Rudolph, T. J. Burr, J. W. Mansfield, D. Stead, A. Vivian and J. von Kietzell, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 188–191.CrossRefGoogle Scholar
  57. Grgurina, I., and Mariotti, F., 1999, Biosynthetic origin of syringomycin and syringopeptin 22, toxic secondary metabolites of the phytopathogenic bacterium Pseudomonas syringae pv. syringae, FEBS Lett. 462: 151–154.PubMedCrossRefGoogle Scholar
  58. Grgurina, I., Scaloni, A., and Iacobellis, N.S., 1997a, A novel syringopeptin produced by a bean strain of Pseudomonas syringae pv. syringae, It. Biochem. Soc. Trans. 9: 397.Google Scholar
  59. Grigoriev, P., Schlegel, R., Domberger, K., and Grafe, U., 1995, Formation of membrane pores by aurantimycins A and B, new lipopeptide antibiotics from Streptomyces aurantiacus, Bioelectrochem. and Bioen. 36: 57–59.CrossRefGoogle Scholar
  60. Grilley, M.M., Stock, S.D., Dickson, R.C., Lester, R.L., and Takemoto, J.Y., 1998, Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae, J. Biol. Chem. 273: 11062–11068.PubMedCrossRefGoogle Scholar
  61. Gross, D.C., Cody, S., Proebsting, E.L. Jr, Radamaker, G.K., and Spotts, R.A., 1984, Ecotypes and pathogenicity of ice-nucleation-active Pseudomonas syringae isolated from deciduous tree orchards, Phytopathology 74: 241–348.CrossRefGoogle Scholar
  62. Gross, D.C., and DeVay, J.E., 1977, Production and purification of syringomycin, a phytotoxin produced by Pseudomanas syringae, Physiol. Plant Pathol. 11: 13–28.Google Scholar
  63. Gross, D.C., DeVay, J.E., and Stadtman, F.H., 1977b, Chemical properties of syringomycin and syringotoxin: toxigenic peptides produced by Pseudomonas syringae, J. Appl. Bacteriol. 43: 453–464.CrossRefGoogle Scholar
  64. Guenzi, E., Galli, G., Grgurina, I., Gross, D.C., and Grandi, G., I998a, Characterization of the syringomycin synthetase gene cluster, J. Biol. Chem. 273: 32857–32863.Google Scholar
  65. Guenzi, E., Galli, G., Grgurina, I., Pace, E., Ferranti, P., and Grandi, G., 1998b, Coordinate transcription and physical linkage of domains in surfactin synthetase are not essential for proper assembly and activity of the multienzyme complex, J. Biol. Chem. 273: 14403–14410.PubMedCrossRefGoogle Scholar
  66. Hama, H., Young, D.A., Radding, J.A., Ma, D., Tang, J., Stock, S.D., and Takemoto, J.Y., 2000, Requirement of sphingolipid alpha-hydroxylation for fungicidal action of syringomycin E., FEBS Lett. 478: 26–28.PubMedCrossRefGoogle Scholar
  67. Harrison, L., Teplow, D. B., Rinaldi, M., and Strobel, G. A., 1991, Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity, J. Gen. Microbiol. 137: 2857–2865.PubMedCrossRefGoogle Scholar
  68. Hemmi, K., Julmanop, C., Hirata, D., Tsuchiya, E., Takemoto, J.Y., and Miyakawa, T., 1995, The physiological roles of membrane ergosterol as revealed by the phenotypes of syrllerg3 null mutant of Saccharomyces cerevisiae, Biosci. Biotech. Biochem. 59: 482–486.CrossRefGoogle Scholar
  69. Hiramoto,M., Okada,K., and Nagai, 5.,1970, The revised structure of viscosin, a peptide antibiotic, Tet. Lett. 13: 1087–1090.Google Scholar
  70. Hirano, S.S., and Upper, C.D., 1990, Population biology and epidemiology of Pseudomonas syringae, Annual Review of Phytopathology 28: 155–177.CrossRefGoogle Scholar
  71. Hutchison, M.L., and Gross, D.C., 1997, Lipopeptide phytotoxin produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin, Mol. Plant Microbe Interact. 10: 347–354.PubMedCrossRefGoogle Scholar
  72. Hutchison, M.L, and Johnstone, K., 1993, Evidence of the involvement of the surface active properties on the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agarus bisporus, Physiol. Mol. Plant Pathol. 42: 373–384.CrossRefGoogle Scholar
  73. Hutchison, M.L., Tester, M.A., and Gross, D.C., 1995, Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction, Mol. Plant Microbe Interact. 8: 1–10.CrossRefGoogle Scholar
  74. lacobellis, N.S., and Lavermicocca, P., 1990, Evidence for the presence of syringomycin-like substance in tissues infected with Pseudomonas syringae pv. syringae, in: 8rn Congress of Mediterranean Phytopathological Union, Agadir, Morocco, pp. 187–188.Google Scholar
  75. Iacobellis, N.S., Lavermicocca, P., Grgurina, I., Simmaco, M., and Ballio, A., 1992, Phytotoxic properties of Pseudomonas syringae pv. syringae toxins, Physiol. Mol. Plant Pathol. 40: 107–116.CrossRefGoogle Scholar
  76. Isogai, A., Iguchi, H., Nakayama, J., Kusai, J., Takemoto, J.Y., and Suzuki, A., 1995, Structural analysis of new syringopeptins by tandem mass spectrometry, Biosci. Biotech. Biochem. 59: 1374–1376.CrossRefGoogle Scholar
  77. Jamison, J., Levy, S., Sun, X., Zeckner, D., Current, W., Zweifel, M., Rodriguez, M., Turner, W., and Chen, S.H., 2000, Syntheses and antifungal activity of pseudomycin side-chain analogues, Part 1, Bioorg. Med. Chem. Letters 10: 2101–2105.CrossRefGoogle Scholar
  78. Janisiewicz, W.J., and Bors, B., 1995, Development of a microbial community of bacterial and yeast antagonists to control wound-invading postharvest pathogens of fruits, App. Environ. Microbiol. 9: 3261–3267.Google Scholar
  79. Janisiewicz, W.J., and Jeffers, S.N., 1997, Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage, Crop Protection 16: 629–633.CrossRefGoogle Scholar
  80. Janisiewicz, W.J., and Marchi, A., 1992, Control of storage rots on various pear cultivars with saprophytic strain of Pseudomonas syringae, Plant Disease 76: 555–560.CrossRefGoogle Scholar
  81. Julmanop, C., Takano, Y., Takemoto, J.Y., and Miyakawa, T., 1993, Protection by sterols against the cytotoxicity of syringomycin in the yeast Saccharomyces cerevisiae, J. Gen. Microbiol. 139: 2323–2327.PubMedCrossRefGoogle Scholar
  82. Kaulin, Y.A., Schagina, L.V., Bezrukov, S.M., Maley, V.V., Feigin, A.M., Takemoto, J.Y., Teeter, J.H., and Brand, J.G., 1998, Cluster organization of ion channel formed by the antibiotic syringomycin E in bilayer lipid membranes, Biophys. J. 74: 2918–2925.Google Scholar
  83. Kauss, H., 1987, Some aspects of calcium-dependent regulation in plant metabolism, Annu. Rev. Plant Physiol. 38: 47–72.CrossRefGoogle Scholar
  84. Kauss, H., 1990, Role of the plasma membrane in host-pathogen interactions; pages 320–350 in: The Plant Plasma Membrane-Structure, Function and Molecular Biology. Larson, C. amd Moller, I. M. (eds) Springer-Verlag, Berlin.Google Scholar
  85. Kauss, H., Waldmann, T., Jeblick, W., and Takemoto, J.Y., 1991, The phytotoxin syringomycin elicits Cat+-dependent callose synthesis in suspension-cultured cells of Catharanthus roseus, Physiol. Plant. 81: 134–138.CrossRefGoogle Scholar
  86. Kenwick, S.,and Jacobsen, B.J., 1988, Biological control of Fusarium dry rot on potato with antagonistic bacteria I commercial formulation, Phytopathology 88: 47.Google Scholar
  87. Kleinkauf H., and von Döhren, H., 1987, Biosynthesis of peptide antibiotics, Ann. Rev. Microbiol. 41: 259–289. Kleinkauf, H., and von Döhren, H., 1996, A nonribosomal system of peptide biosynthesis, Eur. J. Biochem. 236: 335–351.CrossRefGoogle Scholar
  88. Klement, Z., Rudolph, K., and Sands, D.C., 1990, Methods in Phytobaceriolgy, Akademiai Kiado, Budapest.Google Scholar
  89. Layock, M.V., Hildebrand, P.D., Thibault, P., Walter, J.A., and Wright, J.L.C., 1991, Viscosin, a potent petidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens, J. Agric. Food Chem. 39: 438–489.Google Scholar
  90. Lam, B. S., Strobel, G. A., Harrison, L. A., and Lam, S T, 1987, Transposon mutagenesis and tagging of fluorescent Pseudomonas: antimycotic production is necessary for control of Dutch elm disease, Proc. Natl. Acad. Sci. 84: 6447–6451.PubMedCrossRefGoogle Scholar
  91. Latoud, C., Peypoux, F., Michel, G., Genet, R., and Morgat, J.L., 1986, Interactions of antibiotics of the iturin group with human erythrocytes, Biochim. Biophys. Acta 856: 526–535.PubMedCrossRefGoogle Scholar
  92. Latoud, C., Peypoux, F., and Michel,G.,1990, Interaction of iturin A, a lipopeptide antibiotic,with Saccharomyces cerevisiae cells: influence of the sterol membrane composition, Can J. Microbiol. 36: 384–389.Google Scholar
  93. Lavermicocca, P., Iacobellis, N.S., Simmaco, M., and Graniti, A., 1997, Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins, Physiol. Mol. Plant Pathol. 50: 129–140.CrossRefGoogle Scholar
  94. Little, O.K., Bostock, R.M., and Kirkpatrick, B.C., 1998, Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruits in California, App. Environ. Microbiol. 10: 3818–3823.Google Scholar
  95. Maget-Dana, R., Harnois, I., and Ptak, M., 1989, Interactions of the lipopeptide antifungal iturin A with lipids in mixed monolayers, Biochim. Biophys. Acta. 981: 309–314.PubMedCrossRefGoogle Scholar
  96. Maget-Dana, R., Ptak, M. L., Peypoux, F., and Michel, G., 1985, Pore-forming properties of iturin A, a lipopeptide antibiotic, Biochim. Biophys. Acta 815: 405–409.PubMedCrossRefGoogle Scholar
  97. Maget-Dana, R., and Ptak, M., 1995, Interactions of surfactins with membrane models, Biophys. J. 68: 1937–1943.PubMedCrossRefGoogle Scholar
  98. Maget-Dana, R., Thimon, L., Peypoux, F., and Ptak, M., 1992, Surfactin/iturin interactions may explain the synergistic effect of surfactin on the biological properties of iturin A, Biochimie 74: 1047–1051.PubMedCrossRefGoogle Scholar
  99. Marahiel, M.A., Stachelhaus, T., and Moots, H.D., 1997, Modular peptide synthetases involved in nonribosomal peptide synthesis, Chem. Rev. 97: 2651–2675.PubMedCrossRefGoogle Scholar
  100. Marshall, E., 1994, The emerging fungal threat, Science 266: 1632–1633.CrossRefGoogle Scholar
  101. Metzger, J. W., Sawyer, W. H., Wille, B., Biesert, L., Bessler, W. G., and Jung, G., 1993, Interaction of immunologically-active lipopeptides with membranes, Biochim. Biophys. Acta. 1149: 29–39.PubMedCrossRefGoogle Scholar
  102. Mo, Y.Y., Geibel, M., Bonsall, R.F., and Gross, D.C., 1995, Analysis of sweet cherry (Prunus avium L.) leaves for plant signal molecules that activate the syrB gene required for the synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv. syringae, Plant Physiol. 107: 603–612.PubMedGoogle Scholar
  103. Mo, Y. Y., and Gross, D. C., 1991a, Expression in vitro and during plant pathogenesis of the syrB gene required for syringomycin production by Pseudomonas syringae pv. syringae, Mol. Plant Microbe Interact. 4: 28–36.CrossRefGoogle Scholar
  104. Mo, Y.Y., and Gross, D.C., 1991b, Plant signal molecules activate the syrB gene, wich is required for syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol. 18: 5784–5792.Google Scholar
  105. Morgan, K.M., and Chatterjee, A.K., 1985, Isolation and characterization of Tn5 insertion mutants of Pseudomonas syringae pv. syringae altered in the production of the peptide phytotoxin syringotoxin, J. Bacteriol. 14–18.Google Scholar
  106. Morgan, K.M., and Chatterjee, A.K., 1988, Genetic organization and regulation of proteins associated with production of syringotoxin by Pseudomonas syringae pv. syringae, J Bacteriol. 170: 5689–5697.PubMedGoogle Scholar
  107. Mortshire-Smith, R.J., Nutkins, J.C., Packuran, L.C., Brodey, C.L., Rainey, P.B., Johnstone, K., and Williams, D.H., 1991, Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonas reactans, Tetrahedron 47: 3645–3654.CrossRefGoogle Scholar
  108. Mott, K.A., and Takemoto, J.Y., 1989, Syringomycin, a bacterial phytotoxin, closes stomata, Plant Physiol. 90: 1435–1439.PubMedCrossRefGoogle Scholar
  109. Neu, T.R., Hartner,T., and Poralla, K., 1990, Surface active properties of viscosin, a peptidolipid antibiotic, Appl. Microbiol. Biotechnol. 32: 518–520.Google Scholar
  110. Nutkins, J.C., Mortshire-Smith, R.J., Packmamn, L.C., Brodey, C.L., Rainey, P.B., Johnstone, K., and Williams, D.H., 1991, Structure determination of tolaasin, an extracellular lipodepsipeptide produced by mushroom pathogen Pseudomonas tolaasii Paine, J. Am. Chem. Soc. 113: 2621–2627.CrossRefGoogle Scholar
  111. Paine, S.G., 1919, Studies on bacteriosis II. A brown blotch disease of cultivated mushrooms, Annals of Applied Biology 5: 206–219.CrossRefGoogle Scholar
  112. Paynter, V.A., and Alconero, R., 1979, A specific fluorescent antibody for detection of syringomycin in infected peach tree tissues, The Am. Physiopathol. Soc. 69: 493–496.Google Scholar
  113. Penner, D., DeVay, J.E., and Backman, P., 1969, The influence of syringomycin on ribonucleic acid synthesis, Plant Physiol. 44: 806–808.PubMedCrossRefGoogle Scholar
  114. Potera, C., 1994, From bacteria: a new weapon against fungal infection, Science 265: 605.PubMedCrossRefGoogle Scholar
  115. Quentin, M.J., Besson, F., Peypoux, F., and Michel, G., 1982, Action of peptidolipidic antibiotics of the iturin group on erythrocytes. Effect of some lipids on heamolysis, Biochim. Biophys. Acta 684: 207–211.PubMedCrossRefGoogle Scholar
  116. Quigley, B.N., and Gross, D.C., 1994, Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes,and activation of phytotoxin production by plant signal molecules, Mol. Plant-Microbe Interact. 7: 78–99.PubMedCrossRefGoogle Scholar
  117. Quigley, B.N., Mo, Y.Y., and Gross, D.C., 1993, SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP-bindig secretion proteins, Mol. Microbiol. 9: 787–801.Google Scholar
  118. Reidl, H.H., Grover, T.A., and Takemoto, J.Y., 1989, Phosphorus-31 NMR evidence for cytoplasmic acidification and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimanae, Biochim. Biophys. Acta 1010: 325–329.PubMedCrossRefGoogle Scholar
  119. Reidl, H.H., and Takemoto, J.Y., 1987, Mechanism of action of bacterial phytotoxin, syringomycin. Simultaneous measurement of early responses in yeast and maize, Biochim. Biophys. Acta 898: 59–69.CrossRefGoogle Scholar
  120. Rainey, P.B., Brodey, C.L., and Johnstone, K., 1991, Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii, Physiol. Mol. Plant Pathol. 39: 57–70.CrossRefGoogle Scholar
  121. Risse, D., Beiderbeck, H., Taraz, K., Budzikiewicz, H., and Gustine, D., 1995, Corrugatin, a lipopeptide siderophore from Pseudomonas corrugata, Z. Naturforsch 53: 295–304.Google Scholar
  122. Rodriguez, M.J., Belvo, M., Morris, R., Zeckner, D., Current, W.L., Sachs, R.K., and Zweifel, M.J., 2001, The synthesis of pseudomycin C via a novel acid promoted side-chain deacylation of pseudomycin A, Bioorg. Med. Chem. Lett. 11: 161–164.PubMedCrossRefGoogle Scholar
  123. Scaloni, A., Bachmann, R.C., Takemoto, J.Y., Barra, D., Simmaco, M., and Ballio, A., 1994, Stereochemical structure of syringomycin, a phytotoxic metabolite of Pseudomonas syringae pv. syringae, Nat. Prod. Letters 4: 159–164.CrossRefGoogle Scholar
  124. Scaloni, A., Camoni, L., Di Giorgio, D., Scortichini, M., Cozzolino, R., and Ballio, A., 1997, A new syringopeptin produced by Pseudomonas syringae pv. syringae strain isolated from diseased twigs of laurel, Physiol. Mol. Plant Pathol. 51: 259–264.CrossRefGoogle Scholar
  125. Scholz-Schroeder, B.K., Hutchinson, M.L., Grgurina, I., and Gross, D.C., 2001, The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B 301 D on the basis of sypA and syrB 1 biosynthesis mutant analysis, Mol. Plant Microbe Interact. 14: 336–348.Google Scholar
  126. Scheffer, R.J., 1983, Biological control of Dutch elm disease by Pseudomonas species, Annals Appl. Biol. 103: 21–30.CrossRefGoogle Scholar
  127. Segre, A., Bachman, R.C., Ballio, A., Bossa, F., Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., and Takemoto, J.Y., 1989, The structure of syringomycin A1, E and G., FEBS Lett. 255: 27–31.CrossRefGoogle Scholar
  128. Sinden, S.L., De Vay, J.E., and Backman, P.A., 1971, Properties of syringomycin, a wide spectrum antibiotic and phytotoxin produced by Pseudomonas syringae, and its role in the bacterial canker disease of peach trees, Physiol. Plant Pathol. 1: 199–210.CrossRefGoogle Scholar
  129. Singh, V.K., and Takemoto, J.Y., 1996, Suppression of mitogen-induced lymphocyte proliferation by syringomycin E., FEMS Immunol. Medical Microbiol. 15: 177–179.CrossRefGoogle Scholar
  130. Sorensen, K.N., Kim, K-H, and Takemoto, J.Y., 1996, In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae, Antimicrob. Agents and Chemother. 40: 2710–2713.Google Scholar
  131. Sorensen, K.N., Kim, K-H, and Takemoto, J.Y., 1998a, PCR detection of cyclic lipodepsinonpeptide-producing Pseudomonas syringae pv. syringae and similarity of strains, Appl. Environ. Microbiol. 64: 226–230.PubMedGoogle Scholar
  132. Sorensen, K.N., Wangstrom, A.A., Allen, S.D., and Takemoto, J.Y., 1998b, Efficacy of syringomycin E in a murine model of vaginal candidiasis, J. Antibiotics 51: 743–749.CrossRefGoogle Scholar
  133. Stachelhaus, T., Mootz, H.D., and Marahiel, M.A., 1999, The specificity-conferring code of adenylation domains in non ribosomal peptide synthetase, Chem. Biol. 6: 493–505.PubMedCrossRefGoogle Scholar
  134. Stapp, C., 1958, Pseudomonas syringae van Hall, in: Pflanzenpathogene Bakterien,Paul Parey in Berlin and Hamburg, pp. 198–204.Google Scholar
  135. Surico, G., and DeVay, J.E., 1982, Effect of syringomycin and syringotoxin produced by Pseudomonas syringae pv. syringae on structure and function of mitochondria isolated from locus spot resistant and susceptible maize lines, Physiol. Plant Pathol. 21: 39–53.CrossRefGoogle Scholar
  136. Stock, S.D., Hama, H., Radding, J.A., Young, D.A., and Takemoto, J.Y., 2000, Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose-and phosphoinositol-containing head groups, Antimicrob. Agents and Chemother. 44: 1174–1180.CrossRefGoogle Scholar
  137. Taguchi, N., Takano, Y., Julmanop, C., Wang, Y., Stock, S., Takemoto, J., and Miyakawa, T., 1994, Identification and analysis of the Saccharomyces cerevisiae SYR1 gene reveals that ergosterol is involved in the action of syringomycin, Microbiology 140: 353–359.PubMedCrossRefGoogle Scholar
  138. Takemoto, J.Y., Yu, Y., Stock, S.D., and Miyakawa, T., 1993, Yeast genes involved in growth inhibition by Pseudomonas syringae pv syringae syringomycin family lipodepsipeptides, FEMS Microbiof. Lett. 114: 339–342.CrossRefGoogle Scholar
  139. Takemoto, J.Y., Zhang, L., Taguchi, N., Tachikawa, T., and Miyakawa, T., 1991, Mechanism of action of the phytotoxin syringomycin: a resistant mutant of Saccharomyces cerevisiae reveals an involvement of Cat’ transport, J. Gen. Microbiol. 137: 653–659.CrossRefGoogle Scholar
  140. Thimon, L., Peypoux, F., Maget-Dana, R., Roux, B., and Michel, G., 1992, Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis, Biotecnol. Appl. Biochem. 16: 144–151.Google Scholar
  141. Tolaas, A.G., 1915, A bacterial disease of cultivated mushrooms, Phytopathology 5: 51–54.Google Scholar
  142. van Hall, C.J.J., 1902, De seringenziegte, veroorzaakt door Pseudomonas syringae nov. sp. Bijdragen tot Kennis der bakterieele Plantenziekten, Amsterdam, 409 p.Google Scholar
  143. Vassilev, V., Lavermicocca, P., Di Giorgio, D., and Iacobellis, N.S., 1996, Production of syringomycins and syringopeptins by Pseudomonas syringae pv. atrofaciens, Plant Pathology 45: 316–322.CrossRefGoogle Scholar
  144. von Döhren, H., Keller, V., Vater, J., and Zocher, R., 1997, Multifunctional peptide synthetases, Chem. Rev. 97: 2675–2705.CrossRefGoogle Scholar
  145. von Kietzel, J., and Rudolph, K., 1997, Wheat diseases caused by Pseudomonas syringae pathovars, in: The Bacterial Diseases of Wheat: Concepts and Methods of Disease Management, E. Duvellier, L. Fucikovsky and K. Rudolph, eds., Mexico, CIMMYT, pp. 49–57.Google Scholar
  146. Williamson, S.M., Guzman, M., Anas,O., Martin, D.H., Jin, X., and Sutton,T.B., 1999, Evaluation of potential biocontrol agents for crown rot of banana, Phytopathology 89: S85.Google Scholar
  147. Xu, G.W., and Gross D.C., 1988a, Evaluation of the role of syringomycin in plant pathogenesis by using Tn5 mutants of Pseudomonas syringae pv. syringae defective in syringomycin production, Appl. Environ. Microbiol. 54: 1345–1353.PubMedGoogle Scholar
  148. Xu, G.W., and Gross, D.C., 1988b, Physical and functional analyses of the syrA and syrB genes involved in syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol. 170: 5680–5688.PubMedGoogle Scholar
  149. Zhang, Y., Boyer, R., Sun, X., Paschal, J., and Chen, S.H., 2000, Serendipitous synthesis of novel dehydro-and dechloro-pseudomycin B derivatives, Bioorg. Med. Chem. Lett., 10: 775–778.PubMedCrossRefGoogle Scholar
  150. Zhang, J.H., Quigley, N.B., and Gross, D.C., 1995, Analysis of the syrB and syrC gene of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism, J. Bacteriol. 177: 4009–4020.PubMedGoogle Scholar
  151. Zhang, J.H., Quigley, N.B., and Gross, D.C., 1997, Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae, Appl. Environ. Microbiol. 63: 2771–2778.PubMedGoogle Scholar
  152. Zhang, L., and Takemoto, J.Y., 1986, Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin. Interaction with the plasma membrane of wild-type and respiratory-deficient strains of Saccharomyces cerevisiae, Biochim. Biophys. Acta 861: 201–204.PubMedGoogle Scholar
  153. Zhang, L., and Takemoto, J.Y., 1987, Effects of Pseudomonas syringae pv. syringae phytotoxin, syringomycin, on plasma membrane functions of Rhodotorula pilimanae, Phytopathol. 77: 297–303.CrossRefGoogle Scholar
  154. Zhang, L., and Takemoto, J.Y., 1989, Syringomycin stimulation of potassium efflux by yeast cells, Biochim. Biophys. Acta 987: 171–175.CrossRefGoogle Scholar
  155. Zhang, Y.Z., Sun, X., Zeckner, D.J., Sachs, R.K., Current, W.L., and Chen, S-H., 2001a, 8-amido-bearing pseudomycin B (PSB) analogue: novel antifungal agents, Bioorg. Med. Chem. Letters 11: 123–126.Google Scholar
  156. Zhang, Y.Z., Sun, X., Zeckner, D.J., Sachs, R.K., Current, W.L., Gidda, J., Rodriguez, M., and Chen, S-H., 200lb, Syntheses and antifungal activities of novel 3-amido bearing pseudomycin analogues, Bioorg. Med. Chem. Letters 11: 903–907.Google Scholar
  157. Zimmerman, S., Ehrhardt, T., Plesch, G., and Müller-Röber, 1999, Ion channels in plant signaling, Cell. and Mol. Life Sci. 55: 183–203.CrossRefGoogle Scholar
  158. Ziegler, W., and Pavlovkin, J., 1985, Syringotoxin, ein phytotoxin von Pseudomonas syringae pv. syringae, erzeugt ionenkanäle in bimolekularen lipid membranen, Acta Phytopathologica Academiae Scientarum Hungaricae 20: 35–45.Google Scholar
  159. Ziegler, W., Pavlovkin, J., Remis, D., and Pokorny, J., 1986, The anionic/cationic selectivity of the syringotoxin channel, Biologia (Bratislava) 41: 1091–1096.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ingeborg Grgurina
    • 1
  1. 1.Department of Biochemical Sciences “A. Rossi-Fanelli”University of Rome “La Sapienza”RomeItaly

Personalised recommendations