Algal and Cyanobacterial Metabolites as Agents for Pest Management

  • Kevin K. Schrader
  • Dale G. Nagle
  • David E. Wedge


Since the early 1970s, agriculture has struggled with the evolution of resistance to chemical agents used to control pests. Increased necessity for repeated chemical applications, development of pesticide cross-resistance, and disease resistance management strategies have overshadowed the use of agricultural chemicals. Scientists are currently attempting to control agricultural pests with fewer effective chemical controls. In addition, the desire for safer pesticides with less environmental toxicity is a major public concern. Particularly desirable is the discovery of totally novel, prototype pesticidal agents representing new chemical classes with different toxicities that operate by different modes of action and, consequently, lack cross-resistance with currently used chemicals. In this respect, evaluating natural products and extracts to identify potential new pesticides offers an approach to discover new chemical entities that have never been synthesized by scientists.


Microcystis Aeruginosa Domoic Acid Algicidal Activity Lipophilic Extract Cyanobacterial Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H., Uchiyama, M., Sato, R., and Muto, S., 1974, Plant growth regulators occurring in marine algae, Plant GrowthSubst., Proc. Int. Conf pp. 201–206.Google Scholar
  2. Agrios, G.N., 1997, Plant Pathology, Academic Press, San Diego, California.Google Scholar
  3. Argandona, V., Del Pozo, T., San-Martin, A., and Rovirosa, J., 2000, Insecticidal activity ofPlocamium cartilagineum monoterpenes, Bol. Soc. Chil. Quim. 45: 371–376.Google Scholar
  4. Atta-Ur-Rahman, Choudhary, M.I., Shabbir, M.M., Ghani, U., and Shameel, M., 1997, A succinylanthranilic acid ester and other bioactive constituents ofJolyna laminarioides, Phytochemisty 46: 1215–1218.Google Scholar
  5. Bagchi, S.N., Chauhan, V.S., and Marwah, J.B., 1993, Effect of an antibiotic from Oscillatoria late-virens on growth, photosynthesis, and toxicity ofMicrocysits aeruginosa, Curr. Microbiol. 26: 223–228.CrossRefGoogle Scholar
  6. Bailey, J.A., and Jeger, M.J., 1992, Colletotrichum: Biology, Pathology and Control, CAB International, Wallingford, United Kingdom.Google Scholar
  7. Bates, S.S., Garrison, D.L., and Horner, R.A., 1998, Bloom dynamics and physiology of domoic acid-producing Pseudo-nitzschia species, in: NATO ASI Series G: Ecological Sciences, Vol. 41, Physiological Ecology of Harmful Algal Blooms, D.M. Anderson, A.D. Cembella and G.M. Hallegraeff, eds., Springer-Verlag, Berlin Heidelberg, pp. 267–292.Google Scholar
  8. Bennamara, A., Abourriche, A., Berrada, M., Chaarrouf, M., Chaib, N., Boudouma, M., and Garneau, F.X., 1999, Methoxybifurcarenone: an antifungal and antibacterial meroditerpenoid from the brown alga Cystoseira tamariscifolia, Phytochemistry 52: 37–40.PubMedCrossRefGoogle Scholar
  9. Bhakuni, D.S., 1998, Some aspects of bioactive marine natural products, J. Indian Chem. Soc. 75: 191–205.Google Scholar
  10. Blunt, J.W., Munro, M.H.G., Blunt, D.A., Hickford, S.J.H., and Vigneswaran, M., 2000, MarinLit Marine Literature DataBase, version 10.71 (August 21, 2000 ), University of Canterbury, Department of Chemistry, Christchurch, New Zealand.Google Scholar
  11. Caccamese, S., Azzolina, R., Fumari, G., Cormaci, M., and Grasso, S., 1981, Antimicrobial and antiviral activities of some marine algae from Eastern Sicily, Botanica Marina 24: 365–367.CrossRefGoogle Scholar
  12. Cannel, R.J.P., 1993, Algae as a source of biologically active products, Pestic. Sci. 39: 147–153.CrossRefGoogle Scholar
  13. Carmel i, S., Moore, R.E., and Patterson, G.M.L., 1990, Tolytoxin and new scytophycins from three species of Scytonema, J. Nat. Prod. 53: 1533–1542.PubMedCrossRefGoogle Scholar
  14. Carmichael, W.W., 1992, Cyanobacteria secondary metabolites-the cyanotoxins, J. Appl. Bacterial. 72: 445–459.CrossRefGoogle Scholar
  15. Carter, D.C., Moore, R.E., Mynderse, J.S., Niemczura, W.P., and Todd, J.S., 1984, Structure ofmajusculamide C, a cyclic depsipeptide from Lyngbya majuscula, J. Org. Chem. 49: 236.CrossRefGoogle Scholar
  16. Casanova, M.T., Burch, M.D., Brock, M.A., and Bond, P.M., 1999, Does toxic Microcystis aeruginosa affect aquatic plant establishment? Environ. Toxicol. 14: 97–109.CrossRefGoogle Scholar
  17. Chauhan, V.S., Marwah, J.B., and Bagchi, S.N., 1992, Effect of an antibiotic from Oscillatoria sp. on phytoplankters, higher plants and mice, New Phytol. 120: 251–257.CrossRefGoogle Scholar
  18. Codd, G.A., 1995, Cyanobacterial toxins: occurrence, properties and biological significance, Water Sci Technol. 32: 149–156.Google Scholar
  19. Dayan, F.E., Romagni, J.G., and Duke, S.O., 2000, Investigating the mode of action of natural phytotoxins, J. Chem. Ecol. 26: 2079–2094.CrossRefGoogle Scholar
  20. Dixon, G.K., 1996, Biologically active compounds from algae, Crit. Rep. Appl. Chem. 35: 114–216.Google Scholar
  21. Dombos, D.L., Jr., and Spencer, G.F., 1990, Natural products phytotoxicity: a bioassay suitable for small quantities of slightly water-soluble compounds, J. Chem. Ecol. 16: 339–352.CrossRefGoogle Scholar
  22. El Sayed, K.A., Dunbar, D.C., Perry, T.L., Wilkins, S.P., Hamann, M.T., Greenplate, J.T., and Wideman, M.A., 1997, Marine natural products as prototype insecticidal agents, J. Agric. Food Chem. 45: 2735–2739.CrossRefGoogle Scholar
  23. English, C.R., Schwedler, T.E., and Dyck, L.A., 1993, Aphanizomenonflos-aquae, a toxic blue-green alga in commercial channel catfish, Ictalurus punctatus, ponds: a case history, J. Appl. Aquacult. 3: 195–209.Google Scholar
  24. Entzeroth, M., Mead, D.J., Patterson, G.M.L., and Moore, R.E., 1985, A herbicidal fatty acid produced by Lyngbya aestuarii, Phytochemistry 24: 2875–2876.CrossRefGoogle Scholar
  25. Falch, B.S., König, G.M., Wright, A.D., Sticher, O., Angerhofer, C.K., Pezzuto, J.M., and Bachmann, H., 1995, Biological activities of cyanobacteria: evaluation of extracts and pure compounds, Plant Med. 61: 321–328.CrossRefGoogle Scholar
  26. Fattorusso, E., Magno, S., Mayol, L., Santacroce, C., and Sica, D., 1976, Oxocrinol and crinitol, novel linear terpenoids from the brown alga Cystoseira crinita, Tetrahedron Lett. 12: 937–940.CrossRefGoogle Scholar
  27. Fenical, W., 1983, Investigation of benthic marine algae as a resource for new pharmaceuticals and agricultural chemicals. Proc. Joint China-US Phycol. Symp., C.K. Tseng, ed., Science Press, Beijing, China, pp. 497–521.Google Scholar
  28. Fenical, W., and Paul, V.J., 1984, Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae, Hydrobiologia 116 /117: 135–140.CrossRefGoogle Scholar
  29. Fenical, W., and Sims, J.J., 1973, Zonarol and isozonarol, fungitoxic hydroquinones from the brown seaweed Dictyopteris zonarioides, J. Org. Chem. 38: 2383–2386.PubMedCrossRefGoogle Scholar
  30. Flores, E., and Wolk, C.P., 1986, Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains, Arch. Microbiol. 145: 215–219.PubMedCrossRefGoogle Scholar
  31. Fukuzawa, A., and Masamune, T., 1981, Laurepinnacin and isolaurepinnacin, new acetylenic cyclic ethers from the marine red alga Laurencia pinnata Yamada, Tetrahedron Lett. 22: 4081–4084.CrossRefGoogle Scholar
  32. Gleason, F.K., 1986, Cyanobacterin herbicide, U.S. Patent Number 4,626, 271.Google Scholar
  33. Gleason, F.K., 1990, The natural herbicide, cyanobacterin, specifically disrupts thylakoid membrane structure in Euglena gracilis strain Z., FEMS Microbiol. Lett. 68: 77–82.CrossRefGoogle Scholar
  34. Gleason, F.K., and Baxa, C.A., 1986, Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms, FEMS Microbiol. Lett. 33: 85–88.CrossRefGoogle Scholar
  35. Gleason, F.K., and Case, D.E., 1986, Activity of the natural algicide cyanobacterin on angiosperm, Plant Physiol. 80: 834–837.PubMedCrossRefGoogle Scholar
  36. Gleason, F.K., and Paulson, J.L., 1984, Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp., Arch. Microbiol. 138: 273–277.CrossRefGoogle Scholar
  37. Gleason, F.K., Case, D.E., Sipprell, K.D., and Magnuson, T.S., 1986, Effect of the natural algicide, cyanobacterin, on a herbicide-resistant mutant of Anacystis nidulans R2, Plant Sci. 46: 5–10.CrossRefGoogle Scholar
  38. Gross, E.M., Wolk, C.P., and Jüttner, F., 1991, Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola, J. Phycol. 27: 686–692.CrossRefGoogle Scholar
  39. Hagmann, L., and Jüttner, F., 1996, Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity, Tetrahedron Lett. 37: 6539–6542.CrossRefGoogle Scholar
  40. Harris, D.O., and Parekh, M.C., 1974, Further observations on an algicide produced by Pandorina morum, a colonial green flagellate, Microbios 9: 259–265.PubMedGoogle Scholar
  41. Helms, G.L., Moore, R.E., Niemczura, W.P., and Patterson, G.M.L., 1988, Scytonemin A, a novel calcium antagonist from a blue-green alga, J. Org. Chem. 53: 1298–1307.CrossRefGoogle Scholar
  42. Ishida, K., and Murakami, M., 2000, Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa, J. Org. Chem. 65: 5898–5900.PubMedCrossRefGoogle Scholar
  43. Jaki, B., Orjala, B., Heilmann, J., Linden, A., Vogler, B., and Sticher, O., 2000, Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune, J. Nat. Prod. 63: 339–343.PubMedCrossRefGoogle Scholar
  44. Jeong, J.H., Jin, H.J., Sohn, C.H., Suh, K.H., and Hong, Y.-K., 2000, Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae, J. Appl. Phycol. 12: 37–43.CrossRefGoogle Scholar
  45. Jung, J.H., Moore, R.E., and Patterson, G.M.L., 1991, Scytophycins from a blue-green alga belonging to the Nostocaceae, Phytochemistry 30: 3615–3616.CrossRefGoogle Scholar
  46. Jüttner, F., 1997, Nostocyclamide, a toxic decoupling agent ofNostoc, Abstr. IXInt. Symp. Phototrophic Prokaryotes, Vienna, Austria, Sept. 6–13, pp. 40.Google Scholar
  47. Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakurai, T., Oohusa, T., Hara, Y., and Chihara, M., 1988, An allelopathic fatty acid from the brown alga Cladosiphon okamuranus, Phytochemistry 27: 731–735.CrossRefGoogle Scholar
  48. Kearns, K.D., and Hunter, M.D., 2000, Green algal extracellular products regulate antialgal toxin production in a cyanobacterium, Environ. Microbiol. 2: 291–297.PubMedCrossRefGoogle Scholar
  49. Kiviranta, J., Abdel-Hameed, A., Sivonen, K., Niemelä, S.I., and Carlberg, G., 1993, Toxicity of cyanobacteria to mosquito larvae — screening of active compounds, Environ. Taxi. Water Quality 8: 63–71.CrossRefGoogle Scholar
  50. König, G.M., and Wright, A.D., 1997a, Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurencia obtusa, Planta Med. 63: 186–187.PubMedCrossRefGoogle Scholar
  51. König, G.M., and Wright, A.D., 1997b, Laurencia rigida: chemical investigations of its antifouling dichloromethane extract, J. Nat. Prod. 60: 967–970.PubMedCrossRefGoogle Scholar
  52. König, G.M., Wright, A.D., and Linden, A., 1999, Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga, Phytochemistry 52: 1047–1053.PubMedCrossRefGoogle Scholar
  53. Krogmann, D.W., and Jagendorf, A.T., 1959, Inhibition of the Hill reaction by fatty acids and metal chelating agents, Arch. Biochem. Biophys. 80: 421–430.CrossRefGoogle Scholar
  54. Kubo, I., Matsumoto, T., and Ichikawa, N., 1985, Absolute configuration of crinitol: An acyclic diterpene insect growth inhibitor from the brown algae Sargassum tortile, Chem. Lett. 249–252.Google Scholar
  55. Kulik, M.M., 1995, The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi, Eur. J. Plant Path. 101: 585–599.CrossRefGoogle Scholar
  56. Lightner, D.V., 1978, Possible toxic effects of the marine blue-green alga, Spirulina subsalsa, on the blue shrimp, Panaeus stylirostis, J. Invert. Pathol. 32: 139–150.CrossRefGoogle Scholar
  57. Maas, J.L., 1998, Compendium of Strawberry Diseases, APS Press, St. Paul, Minnesota.Google Scholar
  58. Maas, J.L., and Palm, M.E., 1997, Occurrence of anthracnose irregular leafspot, caused by Colletotrichum acutatum, on strawberry in Maryland, Adv. Strawberry Res. 16: 68–70.Google Scholar
  59. Marston, A., and Hostettmann, K., 1991, Assays for molluscicidal, cercaricidal, schistosomicidal and piscidal activities, in: Methods in Plant Biochemistry, P.M. Dey and J.B. Harborne, eds., Academic Press, London, pp. 153–178.Google Scholar
  60. Mason, C.P., Edwards, K.R., Carlson, R.E., Pignatello, J., Gleason, F.K., and Wood, J.M., 1982, Isolation of chlorinecontaining antibiotic from the freshwater cyanobacterium Scytonema hofmanni, Science 215: 400–402PubMedCrossRefGoogle Scholar
  61. McLachlan, J., and Craigie, J.S, 1966, Antialgal activity of some simple phenols. J. Phycol. 2: 133–135.CrossRefGoogle Scholar
  62. Meada, M., Kodama, T., Tanaka, T., Ohfune, Y., Nomoto, K., Nishimura, K., and Fujita, T., 1984, Insecticidal and neuromuscular activities of domoic acid and its related compounds, (Nippon Noyaku Gakkaishi) J. Pesticide Sci. 9: 27–32.CrossRefGoogle Scholar
  63. Meada, M., Kodama, T., Tanaka, T., Yoshizumi, H., Takemoto, T., Nomoto, K., and Fujita, T., 1986, Structures of isodomoic acids A, B and C, novel insecticidal amino acids from the red alga Chondria armata, Cheni. Pharm. Bull. 34: 4892–4895.CrossRefGoogle Scholar
  64. Meada, M., Kodama, T., Tanaka, T., Yoshizumi, H., Takemoto, T., Nomoto, K., and Fujita, T., 1987, Structures of domoilactone A and B, novel amino acids from the red alga, Chondria armata, Tetrahedron Lett. 28: 633–636.CrossRefGoogle Scholar
  65. Metting, B., and Pyne, J.W., 1986, Biologically active compounds from microalgae, Enzyme Microb. Technol. 8: 386–394.CrossRefGoogle Scholar
  66. Mills, D.H., and Wyatt, J.T., 1974, Ostracod reactions to non-toxic and toxic algae, Oecologia (Berlin) 17: 171–177.Google Scholar
  67. Moon, R.E., and Martin, D.F., 1985, Allelopathic substances from a marine alga (Nannochloris sp.), ACSSymp. Ser. 268: 371–380.Google Scholar
  68. Moon, Si., Chen, L., Moore, R.E., and Patterson, G.M.L., 1992, Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca, J. Org. Chem. 57: 1097–1103.CrossRefGoogle Scholar
  69. Moore, R.E., 1996, Cyclic peptides and depsipeptides from cyanobacteria: a review, J. Ind. Microbiol. 16: 134–143.PubMedCrossRefGoogle Scholar
  70. Moore, R.E., Cheuk, C., and Patterson, G.M.L., 1984, Hapalindoles: new alkaloids from blue-green alga Hapalosiphon fontinalis, J. Am. Chem. Soc. 106: 6456–6457.CrossRefGoogle Scholar
  71. Moore, R.E., Furusawa, E., Norton, T.R., Patterson, G.M.L., and Mynderse, J.S., 1989, Scytophycins, U.S. Patent No. 4, 863, 955.Google Scholar
  72. Moore, R.E., Patterson, G.M.L., Mynderse, J.S., and Barchi, J., 1986, Toxins from cyanophytes belonging to the S cytone mataceae, Pure Appl. Chem. 58: 263–271.CrossRefGoogle Scholar
  73. Nagle, D.G., and Paul, V.J., 1999, Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds, J. Phycol. 35 (Suppl. 607): 1412–1421.Google Scholar
  74. Nizan, S., Dimentman, C., and Shilo, M., 1986, Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna, Limnol. Oceanogr. 31: 497–502.CrossRefGoogle Scholar
  75. Orjala, J., and Gerwick, W.H., 1996, Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium Lyngbya majuscule, J. Nat. Prod 59: 427–430.PubMedCrossRefGoogle Scholar
  76. Papke, U., Gross, E.M., and Francke, W., 1997, Isolation, identification, and determination of the absolute configuration of fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret), Tetrahedron Lett. 38: 379–382.CrossRefGoogle Scholar
  77. Patterson, G.M.L., Harris, D.O., and Cohen, W.S., 1979, Inhibition of phototsynthetic and mitochondrial electron transport by a toxic substance isolated from the alga Pandorina morum, Plant Sci. Lett. 15: 293–300.CrossRefGoogle Scholar
  78. Patterson, G.M.L., Larsen, L.K., and Moore, R.E., 1994, Bioactive natural products from blue-green algae, J. Appl. Phycol. 6: 151–157.CrossRefGoogle Scholar
  79. Patterson, G.M.L., Moore, R.E., Carmeli, S., Smith, C.D., and Kimura, L.H., 1995, Scytophycin compounds: compositions and methods for their production and use, U.S. Patent No. 5, 493, 933.Google Scholar
  80. Pergament, I., and Carmeli, S., 1994, Schizotrin A: a novel antimicrobial cyclic peptide from a cyanobacterium, Tetrahedron Lett. 35: 8473–8476.CrossRefGoogle Scholar
  81. Pignatello, J.J., Porwoll, J., Carlson, R.E., Xavier, A., Gleason, F.K., and Wood, J.M., 1983, Structure of the antibiotic cyanobacterin, a chlorine-containing y-lactone from the freshwater cyanobacterium Scytonema hofmanni, J. Org. Chem. 48: 4035–4038.CrossRefGoogle Scholar
  82. Prinsep, M.R., Thomson, R.A., West, M.L., and Wylie, B.L., 1996, Tolypodiol, an antiinflammatory diterpenoid from the cyanobacterium Tolypothrix nodosa, J. Nat. Prod 59: 786–788.PubMedCrossRefGoogle Scholar
  83. Saleh, M., Motawe, H.M., Mahmoud, F., Mahran, G.H., and Soliman, F.M., 1992, Chemical and antimicrobial study of Dictyota dichotoma var. implexa, Fitoterapia 63: 369–371.Google Scholar
  84. San-Martin, A., Negrete, R., and Rovirosa, J., 1991, Insecticide and acaricide activities of polyhalogenated monoterpenes from Chilean Plocamium cartilagineum, Phytochemistry 30: 2165–2169.CrossRefGoogle Scholar
  85. Schlegel, l., Doan, N.T., de Chazal, N., and Smith, G.D., 1999, Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria, J. App!. Phycol. 10: 471–479.CrossRefGoogle Scholar
  86. Schrader, K.K., de Regt, M.Q., Tucker, C.S., and Duke, S.O., 1997, A rapid bioassay for selective algicides, Weed Technol. 11: 767–774.Google Scholar
  87. Schrader, K.K., Duke, S.O., Kingsbury, S.K., Tucker, C.S., Duke, M.V., Dionigi, C.P., Millie, D.F., and Zimba, P.V., 2000, Evaluation of ferulic acid for controlling the musty-odor cyanobacterium, Oscillatoria perornata, in aquaculture ponds, J Appl. Aquacult. 10: 1–16.CrossRefGoogle Scholar
  88. Siddhanta, A.K., and Shanmugam, M., 1999, Metabolites of tropical marine algae of the family Codiaceae (Chlorophyta): chemistry and bioactivity, J. Indian Chem. Soc. 76: 323–334.Google Scholar
  89. Singh, LP., Milligan, K.E., and Gerwick, W.H., 1999, Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula, J. Nat. Prod. 62: 1333–1335.PubMedCrossRefGoogle Scholar
  90. Smith, G.D., and Doan, N.T., 1999, Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants, J. Appl. Phycol. 11: 337–344.CrossRefGoogle Scholar
  91. Smitka, T.A., Bonjouklian, R., Doolin, L., Jones, N.D., Deeter, J.B., Yoshida, W.Y., Prinsep, M.R., Moore, R.E., and Patterson, G.M.L., 1992, Ambiguine isonitriles, fungicidal hapalindole-type alkaloids from three genera of blue-green algae belonging to the Stigonemataceae, J. Org. Chem. 57: 857–861.CrossRefGoogle Scholar
  92. Srivastava, A., Jüttner, F., and Strasser, R.J., 1998, Action of the allelochemical, fischerellin A, on photosystem II, Biochim. Biophys, Acta 1364: 326–336.Google Scholar
  93. Stephenson, W.M., 1966, The effect of hydrolysed seaweed on certain plant pests and diseases, Proc. 5th Intl. Seaweed Symp., Pergamon Press, Oxford, United Kingdom, pp. 405–415.Google Scholar
  94. Tabachek, J.L., and Yurkowski, M., 1976, Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin and 2-methylisoborneol, in saline lakes in Manitoba, J. Fish Res. Board Can. 33: 25–35.Google Scholar
  95. Targett, N.M., and McConnell, O.J., 1982, Detection of secondary metabolites in marine macroalgae using the marsh periwinkle, Littorina irrorata Say, as an indicator organism, J. Chem. Ecol. 8: 115–124.CrossRefGoogle Scholar
  96. Tellez, M.R., Dayan, F.E., Schrader, K.K., Wedge, D.E., and Duke, S.O., 2000, Composition and some biological activities of the essential oil ofCallicarpa americana (L.), J. Agric. Food Chem. 48: 3008–3012.PubMedCrossRefGoogle Scholar
  97. Todorova, A.K., Jüttner, F., Linden, A., Plüss, T., and von Philipsbom, W., 1995, Nostocyclamide: a new macrocyclic, thiazole-containing allelochemical from Nostoc sp. 31 (cyanobacteria), J Org. Chem. 60: 7891–7895.CrossRefGoogle Scholar
  98. Tringali, C., Piattelli, M., Nicolosi, G., and Hostettmann, K., 1986, Molluscicidal and antifungal activity of diterpenoids from brown algae of the family Dictyotaceae, Planta Med. 5: 404–406.PubMedCrossRefGoogle Scholar
  99. Tucker, C.S., 2000, Off-flavor problems in aquaculture, Rev. Fish. Sci. 8: 45–88.CrossRefGoogle Scholar
  100. Turell, M.J., and Middlebrook, J.L., 1988, Mosquito inoculation: an alternative bioassay for toxins, Toxicon 26: 1089–1094.PubMedCrossRefGoogle Scholar
  101. Van Engen, D., Clardy, J., Kho-Wiseman, E., Crews, P., Higgs, M.D., and Faulkner, D.J., 1978, Violacene: a reassignment of structure, Tetrahedron Lett. 1: 29–32.CrossRefGoogle Scholar
  102. Vincent, A., Dayan, F.E., Maas, J.L., and Wedge, D.E., 1999, Detection and isolation of antifungal compounds in strawberry inhibitory to Colletotrichum fragariae, Adv. Strawberry Res. 18: 28–36.Google Scholar
  103. Watanabe, K., Miyakado, M., Ohno, N., Okada, A., Yanagi, K., and Moriguchi, K., 1989a, A polyhalogenated insecticidal monoterpene from the red alga, Plocamium telfairiae, Phytochemistry 28: 77–78.CrossRefGoogle Scholar
  104. Watanabe, K., Umeda, K., and Moriguchi, K., 1989b, Isolation and identification of three insecticidal principles from the red alga Laurencia nipponica Yamada, Agric. Biol. Chem. 53: 2513–2515.CrossRefGoogle Scholar
  105. Wedge, D.E., and Kuhajek, J.M., 1998, A microbioassay for fungicide discovery, SAAS Bull. Biochem. Biotech. 11: 1–7.Google Scholar
  106. Wedge, D.E., and Nagle, D.G., 2000, A new 2D-TLC bioautography method for the discovery of novel antifungal agents to control plant pathogens, J. Nat. Prod. 63: 1050–1054.PubMedCrossRefGoogle Scholar
  107. Wedge, D.E., Galindo, J.C.G., and Marcias, F.A., 2000, Fungicidal activity of natural and synthetic sesquiterpene lactone analogs, Phytochemisty 53: 747–757.CrossRefGoogle Scholar
  108. Welch, S.C., and Rao, A.S.C.P., 1977a, Stereoselective total synthesis of the fungitoxic hydroquinones (±) zonarol and (f) isozonarol, J. Org. Chem. 43: 1957–1961.CrossRefGoogle Scholar
  109. Welch, S.C., and Rao, A.S.C.P., 1977b, Stereoselective total synthesis of (±) zonarol and (±) isozonarol, Tetrahedron Lett. 6: 505–508.CrossRefGoogle Scholar
  110. Wessels, M., König, G.M., and Wright, A.D., 1999, A new tyrosine kinase inhibitor from the marine brown alga Stypopodium zonale, J. Nat. Prod. 62: 927–930.PubMedCrossRefGoogle Scholar
  111. Wium-Andersen, S., Anthoni, U., Christophersen, C., and Houen, G., 1982, Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales), Oikos 39: 187–190.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Kevin K. Schrader
    • 1
  • Dale G. Nagle
    • 2
  • David E. Wedge
    • 1
  1. 1.United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research ServiceThad Cochran National Center for Natural Products ResearchUniversityUSA
  2. 2.Department of Pharmacognosy and National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of PharmacyUniversity of MississippiUniversityUSA

Personalised recommendations