Toxicity of Syringomycins and Its Pathological Significance

  • Katsunori Tamura
  • Tohru Teraoka
  • Isamu Yamaguchi


A phytopathogenic bacterium Pseudomonas syringae pv. syringae is one ofthe most ubiquitously existing bacteria, and causes necrosis on numerous host plants including monocots and dicots (Bradbury, 1986). Because of its broad host range, the bacterium has been extensively studied over many years. Most of virulent strains of this bacterium are known to produce lipodepsinonapeptide phytotoxins called syringomycins that exhibit antibiotic activities against filamentous fungi and yeast. These toxic metabolites are composed of a polar head and hydrophobic 3-hydroxy fatty acid tail of 10, 12, or 14 carbon units in length. Syringomycins are cytotoxic due to formation of pores in plasma membranes which become freely permeable to cations such as Ca2+ (Hutchison and Gross, 1997), and production of these toxins results in increased disease severity (Quigley et al., 1993). Consequently, syringomycins are considered to be important virulence determinants of P. syringae pv. syringae (reviewed in Bender et al., 1999). Besides, strains of this bacterium isolated from citrus and lilac hosts produce related lipodepsinonapeptides, syringotoxin and syringostatin, respectively. In addition, some pathovars of P. syringae other than pv. syringae were found to produce syringomycin-like toxins. The interesting chemical structures and the vast array of biological activities of syringomycins and related toxins produced by P. syringae pv. syringae,as well as significant agricultural damages caused by this bacterium, attract our attention to this group of phytotoxins.


Plant Pathol Toxin Production Sweet Cherry Plant Microbe Interact Plant Pathogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adetuyi, F.C., Isogai, A., Di Giorgio, D., Ballio, A., and Takemoto, J.Y., 1995, Saprophytic Pseudomonas syringae strain MI of wheat produces cyclic lipodepsipeptides, FEMS Microbiol. Lett. 131: 63–67.PubMedCrossRefGoogle Scholar
  2. Anzai, H., Yoneyama, K., and Yamaguchi, I., 1989, Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin, Mol. Gen. Genet. 219: 492–494CrossRefGoogle Scholar
  3. Backman, P.A., and DeVay, J.E., 1971, Studies on the mode of action and biogenesis ofthe phytotoxin syringomycin, Physiol. Plant Pathol. 1: 215–234.CrossRefGoogle Scholar
  4. Ballio, A., Barra, D., Bossa, F., Collina, A., Grgurina, I., Marino, G., Moneti, G., Paci, M., Pucci, P., Segre, A., and Simmaco, M., 1991, Syringopeptins, new phytotoxic lipodepsipeptides ofPseudomonas syringae pv. syringae, FEBS Lett. 291: 109–112.PubMedCrossRefGoogle Scholar
  5. Ballin, A., Bossa, F., Di Giorgio, D., Ferranti, P., Paci, M., Pucci, P., Scaloni, A., Segre, A., and Strobel, G.A., 1994, Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins, FEBSLett. 355: 96–100CrossRefGoogle Scholar
  6. Bender, C.L., Alarcon-Chaidez, F., and Gross, D.C., 1999, Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases, Microbiol. Mol. Biol. Rev. 63: 266–292Google Scholar
  7. Bidwai, A.P., and Takemoto, J.Y., 1987, Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides, Proc. Natl. Acad. Sci. USA 84: 6755–6759PubMedCrossRefGoogle Scholar
  8. Bidwai, A.P., Zhang, L., Backman, R.C., and Takemoto, J.Y., 1987, Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin. Stimulation of red beet plasma membrane ATPase activity, Plant Physiol. 83: 39–43.PubMedCrossRefGoogle Scholar
  9. Bradbury, J.F., 1986, Guide to Plant Pathogenic Bacteria, CAB Intl. Mycol. Inst., Farnham Royal, England. Bull, C.T., Stack, J.P., and Smilanick, J.L., 1997, Pseudomonas syringae strains ESC-10 and ESC-11 survive on wounds on citrus and control green and blue molds of citrus, Biol. Control 8: 81–88.Google Scholar
  10. Bultreys, A., and Gheysen, I., 1999, Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants, Appl. Environ. Microbiol. 65: 1904–1909.PubMedGoogle Scholar
  11. Camoni, L., Di Giorgio, D., Marra, M., Aducci, P., and Ballio, A., 1995, Pseudomonas syringae pv. syringae phytotoxins reversibly inhibit the plasma membrane H(+)-ATPase and disrupt unilamellar liposomes, Biochem. Biophys. Res. Commun. 214: 118–124.Google Scholar
  12. Dalla Serra, M., Fagiuoli, G., Nordera, P., Bernhart, I., Della Volpe, C., Di Giorgio, D., Ballio, A., and Menestrina, G., 1999, The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins, Mol. Plant Microbe Interact. 12: 391–400.PubMedCrossRefGoogle Scholar
  13. DeVay, J.E., and Strobel, G.A., 1962, A wide spectrum antibiotic produced by Pseudomonas syringae, Phytopathology 52: 306.Google Scholar
  14. DeVay, J.E., Lukezic, F.L., Sinden, S.L., English, H., and Coplin, D.L., 1968, A biocide produced by pathogenic isolates of Pseudomonas syringae and its possible role in the bacterial canker disease of peach trees, Phytopathology 58: 95–101.Google Scholar
  15. Di Giorgio, D., Camoni, L., and Ballio, A., 1994, Toxins of Pseudomonas pv. syringae affect W-transport across the plasma membrane of maize, Physiol. Plant. 91: 741–746.CrossRefGoogle Scholar
  16. Di Giorgio, D., Camoni, L., Marchiafava, C., and Ballio, A., 1997, Biological activities of pseudomycin A, a lipodepsinonapeptide from Pseudomonas syringae MSU 16H, Phytochemistry 45: 1385–1391.PubMedCrossRefGoogle Scholar
  17. Flamand, M.C., Pelsser, S., Ewbank, E., and Maraite, H., 1996, Production of syringotoxin and other bioactive peptides by Pseudomonas fuscovaginae, Physiol. Mol. Plant Pathol. 48: 217–231.CrossRefGoogle Scholar
  18. Fukuchi, H., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K., and Suzuki, A., 1992, Isolation and structural elucidation of syringostatins, phytotoxins produced by Pseudomonas syringae pv. syringae lilac isolate, J Chem. Soc. Perkin Trans. 1 (7): 875–880.CrossRefGoogle Scholar
  19. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F., and Grimont, P.A., 1999, DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959), Int. J Syst. Bacteriol. 49: 469–478.PubMedCrossRefGoogle Scholar
  20. Gonzalez, C.F., DeVay, J.E., and Wakeman, R.J., 1981, Syringotoxin: a phytotoxin unique to citrus isolates of Pseudomonas syringae, Physiol. Plant Pathol. 18: 41–50.Google Scholar
  21. Grilley, M.M., Stock, S.D., Dickson, R.C., Lester, R.L., and Takemoto, J.Y., 1998, Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae, J. Biol. Chem. 273: 11062–11068PubMedCrossRefGoogle Scholar
  22. Gross, D.C., 1985, Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production, J. Appl. Bacteriol. 58: 167–174.PubMedCrossRefGoogle Scholar
  23. Gross, D.C., 1991, Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae, Ann. Rev. Phytopathol. 29: 247–278.CrossRefGoogle Scholar
  24. Gross, D.C., Cody, Y.S., Proebsting Jr., E.L., Radamaker, G.K., and Spotts, R.A., 1984, Ecotypes and pathogenicity of ice-nucleation-active Pseudomonas syringae isolated from deciduous fruit tree orchards, Phytopathology 74: 241–248.CrossRefGoogle Scholar
  25. Gross, D.C., and DeVay, J.E., 1977a, Role of syringomycin in holcus spot of maize and systemic necrosis of cowpea caused by Pseudomonas syringae, Physiol. Plant Pathol. 11: 1–11.Google Scholar
  26. Gross, D.C., and DeVay, J.E., 19776, Production and purification of syringomycin, a phytotoxin produced by Pseudomonas syringae, Physiol. Plant Pathol. 11: 13–28.Google Scholar
  27. Gross, D.C., and DeVay, J.E., 1977c, Population dynamics and pathogenesis of Pseudomonas syringae in maize and cowpea in relation to the in vitro production of syringomycin, Phytopathology 67: 475–483.CrossRefGoogle Scholar
  28. Gross, D.C., DeVay, J.E., and Stadturan, F.H., 1977, Chemical properties of syringomycin and syringotoxin: Toxigenic peptides produced by Pseudomonas syringae, J. Appl. Bacteriol. 43: 453–463.CrossRefGoogle Scholar
  29. Guenzi, E., Galli, G., Grgurina, I., Gross, D.C., and Grandi, G., 1998, Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases, J. Biol. Chem. 273: 32857–32863.PubMedCrossRefGoogle Scholar
  30. Hatziloukas, E., and Panopoulos, N.J., 1992, Origin, structure, and regulation ofargK, encoding the phaseolotoxinresistant ornithine carbamoyltransferase in Pseudomonas syringae pv. phaseolicola, and functional expression of argK in transgenic tobacco, J. Bacteriol. 174: 5895–5909.PubMedGoogle Scholar
  31. Harrison, L., Teplow, D.B., Rinaldi, M., and Strobel, G., 1991, Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity, J. Gen. Microbiol. 137: 2857–2865.PubMedCrossRefGoogle Scholar
  32. Hrabak, E.M., and Willis, D.K., 1993, Involvement of the lemA gene in production of syringomycin and protease by Pseudomonas syringae pv. syringae, Mol. Plant Microbe Interact. 6: 368–375.CrossRefGoogle Scholar
  33. Hutchison, M.L., Tester, M.A., and Gross, D.C., 1995, Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: A model for the mechanism of action in the plant-pathogen interaction, Mol. Plant Microbe interact. 8: 610–620.PubMedCrossRefGoogle Scholar
  34. Hutchison, M.L., and Gross, D.C., 1997, Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin, Mol. Plant Microbe Interact. 10: 347–354.PubMedCrossRefGoogle Scholar
  35. Iacobellis, N.S., Lavermicocca, P., Grgurina, I., Simmaco, M., and Ballio, A., 1992, Phytotoxic properties of Pseudomonas syringae pv. syringae toxins, Physiol. Mol. Plant Pathol. 40: 107–116.CrossRefGoogle Scholar
  36. Kitten, T., Kinscherf, T.G., McEvoy, J.L., and Willis, D.K., 1998, A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae, Mol. Microbiol. 28: 917–929.PubMedCrossRefGoogle Scholar
  37. Kleinkauf, H., and von Dohren, H., 1987, Biosynthesis of peptide antibiotics, Ann. Rev. Microbiol. 41: 259–289.CrossRefGoogle Scholar
  38. Lavermicocca, P., Sante lacobellis, N., Simmaco, M., and Graniti, A., 1997, Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins, Physiol. Mol. Plant Pathol. 50: 129–140.CrossRefGoogle Scholar
  39. Mazzola, M., and White, F.F., 1994, A mutation in the indole-3-acetic acid biosynthesis pathway in Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production, J. Bacteriol. 176: 1374–1382.PubMedGoogle Scholar
  40. Mo, Y-Y., and Geibel, M., Bonsall, R.F., and Gross, D.C., 1995, Analysis of sweet cherry (Prunus avium L.) leaves for plant signal molecules that activate the syrB genes for synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv. syringae, Plant Physiol. 107: 603–612.Google Scholar
  41. Mo, Y.-Y., and Gross, D.C., 1991, Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol. 173: 5784–5792.PubMedGoogle Scholar
  42. Morgan, M.K., and Chatterjee, A.K., 1985, Isolation and characterization of Tn5 insertion mutants of Pseudomonas syringae pv. syringae altered in the production of the peptide phytotoxin syringotoxin, J. Bacteriol. 164: 14–18.PubMedGoogle Scholar
  43. Morgan, M.K., and Chatterjee, A.K., 1988, Genetic organization and regulation of proteins associated with production of syringotoxin by Pseudomonas syringae pv. syringae, J. Bacteriol. 170: 5689–5697.PubMedGoogle Scholar
  44. Mott, K.A., and Takemoto, J.Y., 1989, Syringomycin, a bacterial phytotoxin, closes stomata, Plant Physiol. 90: 1435–1439.PubMedCrossRefGoogle Scholar
  45. Ovod, V., Rudolph, K., Knirel, Y., and Krohn, K. 1996, Immunochemical characterization of O polysaccharides composing the alpha-D-rhamnose backbone of lipopolysaccharide of Pseudomonas syringae and classification of bacteria into serogroups 01 and 02 with monoclonal antibodies, J. Bacteriol. 178: 6459–6465.PubMedGoogle Scholar
  46. Paynter, V.A., and Alconero, A., 1979, A specific fluorescent antibody for detection of syringomycin in infected peach tree tissues, Phytopathology 69: 493–496.CrossRefGoogle Scholar
  47. Quigley, N.B., and Gross, D.C., 1994, Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules, Mol. Plant Microbe Interact. 7: 78–90.PubMedCrossRefGoogle Scholar
  48. Quigley, N.B., Mo, Y.Y., and Gross, D.C., 1993, SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP-binding secretion proteins, Mol. Microbiol. 9: 787–801.PubMedCrossRefGoogle Scholar
  49. Reidl, H.H., and Takemoto, J.Y., 1987, Mechanism of action of bacterial phytotoxin, syringomycin. Simultaneous measurement of early responses in yeast and maize, Biochim. Biophys. Acta 898; 59–69.CrossRefGoogle Scholar
  50. Rich, J.J., and Willis, D.K., 1997, Multiple loci of Pseudomonas syringae pv. syringae are involved in pathogenicity on bean: restoration of one lesion-deficient mutant requires two tRNA genes, J. Bacterial. 179: 2247–2258.Google Scholar
  51. Schaad, N.W., Azad, H., Peet, R.C., and Panopoulos, N.J., 1989, Identification of Pseudomonas syringae pv. phaseolicola by a DNA hybridization probe, Phytopathology 79: 903–907.CrossRefGoogle Scholar
  52. Segre, A., Bachmann, R.C., Ballio, A., Bossa, E, Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., and Takemoto, J.Y., 1989, The structure of syringomycins Al, E and G, FEBSLett. 255: 27–31.CrossRefGoogle Scholar
  53. Sinden, S.L., DeVay, J.E., and Beckman, P.A., 1971, Properties of syringomycin, a wide spectrum antibiotic and phytotoxin produced by Pseudomonas syringae and its role in the bacterial canker disease of peach trees, Physiol. Plant Pathol. 1: 199–213.CrossRefGoogle Scholar
  54. Sogn, J.A., 1976, Structure of the peptide antibiotic polypeptin, J. Med. Chem. 19: 1228–1231.PubMedCrossRefGoogle Scholar
  55. Sorensen, K.N., Kim, K. H., and Takemoto, J.Y., 1998, PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains, Appl. Environ. Microbiol. 64: 226–230.PubMedGoogle Scholar
  56. Takemoto, J.Y., 1992, Bacterial phytotoxin syringomycin and its interaction with host membranes, in: Molecular Signals in Plant—Microbe Communications, D.P.S. Verma, ed., CRC Press, Inc., Florida, USA.Google Scholar
  57. Takemoto, J.Y., Giannini, J.L., Vassey, T., and Briskin, D.P., 1989, Syringomycin effects on plasma membrane Ca“ transport, in: Phytotoxins and Plant Pathogenesis, A. Graniti, R.D. Durbin, and A. Ballio, eds., Springer-Verlag KG, Berlin, Germany.Google Scholar
  58. Takemoto, J.Y., Zhang, L., Taguchi, N., Tachikawa, T., and Miyakawa, T.,1991, Mechanism of action of the phytotoxin syringomycin: a resistant mutant of Saccharomyces cerevisiae reveals an involvement of Ca“ transport, J. Gen. Microbial. 137: 653–659.Google Scholar
  59. Tamura, K., Teraoka, T., Hosokawa, D., and Watanabe, M., 1992, Production of non-toxin producing mutant of beet leaf spot bacterium and its pathogenicity (in Japanese), Ann. Phytopath. Soc. Japan 58: 599–600.CrossRefGoogle Scholar
  60. Tamura, K., Teraoka, T., Hosokawa, D., and Watanabe, M., 1994, Some pathovars of Pseudomonas syringae producing syringomycin-like toxin, Ann. Phytopath. Soc. Japan 60: 478–482.CrossRefGoogle Scholar
  61. Vassilev, V., Lavermicocca, P., Di Giorgio, D., and lacobellis, N.S., 1996, Production of syringomycins and syringopeptins by Pseudomonas syringae pv. atrofaciens, Plant Pathol. 45: 316–322.CrossRefGoogle Scholar
  62. Vater, J., 1989, Lipopeptides, an interesting class of microbial secondary metabolites, in: Biologically Active Molecules: Identification, Characterization and Synthesis, Springer-Verlag, Berlin.Google Scholar
  63. Volksch, B., and Weingart, H., 1998, Toxin production by pathovars of Pseudomonassyringae and their antagonistic activities against epiphytic microorganisms, J. Basic. Microbiol. 38: 135–145.PubMedCrossRefGoogle Scholar
  64. Xu, G-W., and Gross, D.C., 1988a, Evaluation of the role of syringomycin in plant pathogenesis by using Tn5 mutants of Pseudomonas syringae pv. syringae defective in syringomycin production, Appl. Environ. Microbiol. 54: 1345–1353.PubMedGoogle Scholar
  65. Xu, G-W., and Gross, D.C., 1988b, Physical and functional analyses of the syrA and syrB genes involved in syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol. 170: 5680–5688PubMedGoogle Scholar
  66. Winkelmann, G., Lupp, R., and Jung, G., 1980, Herbicolins—New peptide antibiotics from Erwinia herbicola, J. Antibiot. (Tokyo) 33: 353–358.CrossRefGoogle Scholar
  67. Zhang, J.H., Quigley, N.B., and Gross, D.C., 1995, Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism, J. Bacteriol. 177: 4009–4020.PubMedGoogle Scholar
  68. Zhang, J.H., Quigley, N.B., and Gross, D.C., 1997, Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae, Appl. Environ. Microbiol. 63: 2771–2778.PubMedGoogle Scholar
  69. Zhang, L., and Takemoto, J.Y., 1987, Effect ofPseudomonas syringae phytotoxin, syringomycin, on plasma membrane functions of Rhodotorula pilimanae, Phytopathology 77: 297–303.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Katsunori Tamura
    • 1
  • Tohru Teraoka
    • 2
  • Isamu Yamaguchi
    • 3
  1. 1.Institute of Molecular and Cellular BiosciencesUniversity of TokyoBunkyo, TokyoJapan
  2. 2.Faculty of AgricultureTokyo University of Agriculture and TechnologyFuchu, TokyoJapan
  3. 3.Plant Science CenterRIKEN (The Institute of Physical and Chemical Research)Wako, SaitamaJapan

Personalised recommendations