Skip to main content

Abstract

A phytopathogenic bacterium Pseudomonas syringae pv. syringae is one ofthe most ubiquitously existing bacteria, and causes necrosis on numerous host plants including monocots and dicots (Bradbury, 1986). Because of its broad host range, the bacterium has been extensively studied over many years. Most of virulent strains of this bacterium are known to produce lipodepsinonapeptide phytotoxins called syringomycins that exhibit antibiotic activities against filamentous fungi and yeast. These toxic metabolites are composed of a polar head and hydrophobic 3-hydroxy fatty acid tail of 10, 12, or 14 carbon units in length. Syringomycins are cytotoxic due to formation of pores in plasma membranes which become freely permeable to cations such as Ca2+ (Hutchison and Gross, 1997), and production of these toxins results in increased disease severity (Quigley et al., 1993). Consequently, syringomycins are considered to be important virulence determinants of P. syringae pv. syringae (reviewed in Bender et al., 1999). Besides, strains of this bacterium isolated from citrus and lilac hosts produce related lipodepsinonapeptides, syringotoxin and syringostatin, respectively. In addition, some pathovars of P. syringae other than pv. syringae were found to produce syringomycin-like toxins. The interesting chemical structures and the vast array of biological activities of syringomycins and related toxins produced by P. syringae pv. syringae,as well as significant agricultural damages caused by this bacterium, attract our attention to this group of phytotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adetuyi, F.C., Isogai, A., Di Giorgio, D., Ballio, A., and Takemoto, J.Y., 1995, Saprophytic Pseudomonas syringae strain MI of wheat produces cyclic lipodepsipeptides, FEMS Microbiol. Lett. 131: 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Anzai, H., Yoneyama, K., and Yamaguchi, I., 1989, Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin, Mol. Gen. Genet. 219: 492–494

    Article  CAS  Google Scholar 

  • Backman, P.A., and DeVay, J.E., 1971, Studies on the mode of action and biogenesis ofthe phytotoxin syringomycin, Physiol. Plant Pathol. 1: 215–234.

    Article  CAS  Google Scholar 

  • Ballio, A., Barra, D., Bossa, F., Collina, A., Grgurina, I., Marino, G., Moneti, G., Paci, M., Pucci, P., Segre, A., and Simmaco, M., 1991, Syringopeptins, new phytotoxic lipodepsipeptides ofPseudomonas syringae pv. syringae, FEBS Lett. 291: 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Ballin, A., Bossa, F., Di Giorgio, D., Ferranti, P., Paci, M., Pucci, P., Scaloni, A., Segre, A., and Strobel, G.A., 1994, Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins, FEBSLett. 355: 96–100

    Article  Google Scholar 

  • Bender, C.L., Alarcon-Chaidez, F., and Gross, D.C., 1999, Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases, Microbiol. Mol. Biol. Rev. 63: 266–292

    CAS  Google Scholar 

  • Bidwai, A.P., and Takemoto, J.Y., 1987, Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides, Proc. Natl. Acad. Sci. USA 84: 6755–6759

    Article  PubMed  CAS  Google Scholar 

  • Bidwai, A.P., Zhang, L., Backman, R.C., and Takemoto, J.Y., 1987, Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin. Stimulation of red beet plasma membrane ATPase activity, Plant Physiol. 83: 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury, J.F., 1986, Guide to Plant Pathogenic Bacteria, CAB Intl. Mycol. Inst., Farnham Royal, England. Bull, C.T., Stack, J.P., and Smilanick, J.L., 1997, Pseudomonas syringae strains ESC-10 and ESC-11 survive on wounds on citrus and control green and blue molds of citrus, Biol. Control 8: 81–88.

    Google Scholar 

  • Bultreys, A., and Gheysen, I., 1999, Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants, Appl. Environ. Microbiol. 65: 1904–1909.

    PubMed  CAS  Google Scholar 

  • Camoni, L., Di Giorgio, D., Marra, M., Aducci, P., and Ballio, A., 1995, Pseudomonas syringae pv. syringae phytotoxins reversibly inhibit the plasma membrane H(+)-ATPase and disrupt unilamellar liposomes, Biochem. Biophys. Res. Commun. 214: 118–124.

    CAS  Google Scholar 

  • Dalla Serra, M., Fagiuoli, G., Nordera, P., Bernhart, I., Della Volpe, C., Di Giorgio, D., Ballio, A., and Menestrina, G., 1999, The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins, Mol. Plant Microbe Interact. 12: 391–400.

    Article  PubMed  Google Scholar 

  • DeVay, J.E., and Strobel, G.A., 1962, A wide spectrum antibiotic produced by Pseudomonas syringae, Phytopathology 52: 306.

    Google Scholar 

  • DeVay, J.E., Lukezic, F.L., Sinden, S.L., English, H., and Coplin, D.L., 1968, A biocide produced by pathogenic isolates of Pseudomonas syringae and its possible role in the bacterial canker disease of peach trees, Phytopathology 58: 95–101.

    Google Scholar 

  • Di Giorgio, D., Camoni, L., and Ballio, A., 1994, Toxins of Pseudomonas pv. syringae affect W-transport across the plasma membrane of maize, Physiol. Plant. 91: 741–746.

    Article  Google Scholar 

  • Di Giorgio, D., Camoni, L., Marchiafava, C., and Ballio, A., 1997, Biological activities of pseudomycin A, a lipodepsinonapeptide from Pseudomonas syringae MSU 16H, Phytochemistry 45: 1385–1391.

    Article  PubMed  Google Scholar 

  • Flamand, M.C., Pelsser, S., Ewbank, E., and Maraite, H., 1996, Production of syringotoxin and other bioactive peptides by Pseudomonas fuscovaginae, Physiol. Mol. Plant Pathol. 48: 217–231.

    Article  CAS  Google Scholar 

  • Fukuchi, H., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K., and Suzuki, A., 1992, Isolation and structural elucidation of syringostatins, phytotoxins produced by Pseudomonas syringae pv. syringae lilac isolate, J Chem. Soc. Perkin Trans. 1 (7): 875–880.

    Article  Google Scholar 

  • Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F., and Grimont, P.A., 1999, DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959), Int. J Syst. Bacteriol. 49: 469–478.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C.F., DeVay, J.E., and Wakeman, R.J., 1981, Syringotoxin: a phytotoxin unique to citrus isolates of Pseudomonas syringae, Physiol. Plant Pathol. 18: 41–50.

    CAS  Google Scholar 

  • Grilley, M.M., Stock, S.D., Dickson, R.C., Lester, R.L., and Takemoto, J.Y., 1998, Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae, J. Biol. Chem. 273: 11062–11068

    Article  PubMed  CAS  Google Scholar 

  • Gross, D.C., 1985, Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production, J. Appl. Bacteriol. 58: 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D.C., 1991, Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae, Ann. Rev. Phytopathol. 29: 247–278.

    Article  CAS  Google Scholar 

  • Gross, D.C., Cody, Y.S., Proebsting Jr., E.L., Radamaker, G.K., and Spotts, R.A., 1984, Ecotypes and pathogenicity of ice-nucleation-active Pseudomonas syringae isolated from deciduous fruit tree orchards, Phytopathology 74: 241–248.

    Article  Google Scholar 

  • Gross, D.C., and DeVay, J.E., 1977a, Role of syringomycin in holcus spot of maize and systemic necrosis of cowpea caused by Pseudomonas syringae, Physiol. Plant Pathol. 11: 1–11.

    CAS  Google Scholar 

  • Gross, D.C., and DeVay, J.E., 19776, Production and purification of syringomycin, a phytotoxin produced by Pseudomonas syringae, Physiol. Plant Pathol. 11: 13–28.

    Google Scholar 

  • Gross, D.C., and DeVay, J.E., 1977c, Population dynamics and pathogenesis of Pseudomonas syringae in maize and cowpea in relation to the in vitro production of syringomycin, Phytopathology 67: 475–483.

    Article  Google Scholar 

  • Gross, D.C., DeVay, J.E., and Stadturan, F.H., 1977, Chemical properties of syringomycin and syringotoxin: Toxigenic peptides produced by Pseudomonas syringae, J. Appl. Bacteriol. 43: 453–463.

    Article  CAS  Google Scholar 

  • Guenzi, E., Galli, G., Grgurina, I., Gross, D.C., and Grandi, G., 1998, Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases, J. Biol. Chem. 273: 32857–32863.

    Article  PubMed  CAS  Google Scholar 

  • Hatziloukas, E., and Panopoulos, N.J., 1992, Origin, structure, and regulation ofargK, encoding the phaseolotoxinresistant ornithine carbamoyltransferase in Pseudomonas syringae pv. phaseolicola, and functional expression of argK in transgenic tobacco, J. Bacteriol. 174: 5895–5909.

    PubMed  CAS  Google Scholar 

  • Harrison, L., Teplow, D.B., Rinaldi, M., and Strobel, G., 1991, Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity, J. Gen. Microbiol. 137: 2857–2865.

    Article  PubMed  CAS  Google Scholar 

  • Hrabak, E.M., and Willis, D.K., 1993, Involvement of the lemA gene in production of syringomycin and protease by Pseudomonas syringae pv. syringae, Mol. Plant Microbe Interact. 6: 368–375.

    Article  CAS  Google Scholar 

  • Hutchison, M.L., Tester, M.A., and Gross, D.C., 1995, Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: A model for the mechanism of action in the plant-pathogen interaction, Mol. Plant Microbe interact. 8: 610–620.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, M.L., and Gross, D.C., 1997, Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin, Mol. Plant Microbe Interact. 10: 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Iacobellis, N.S., Lavermicocca, P., Grgurina, I., Simmaco, M., and Ballio, A., 1992, Phytotoxic properties of Pseudomonas syringae pv. syringae toxins, Physiol. Mol. Plant Pathol. 40: 107–116.

    Article  CAS  Google Scholar 

  • Kitten, T., Kinscherf, T.G., McEvoy, J.L., and Willis, D.K., 1998, A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae, Mol. Microbiol. 28: 917–929.

    Article  PubMed  CAS  Google Scholar 

  • Kleinkauf, H., and von Dohren, H., 1987, Biosynthesis of peptide antibiotics, Ann. Rev. Microbiol. 41: 259–289.

    Article  CAS  Google Scholar 

  • Lavermicocca, P., Sante lacobellis, N., Simmaco, M., and Graniti, A., 1997, Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins, Physiol. Mol. Plant Pathol. 50: 129–140.

    Article  CAS  Google Scholar 

  • Mazzola, M., and White, F.F., 1994, A mutation in the indole-3-acetic acid biosynthesis pathway in Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production, J. Bacteriol. 176: 1374–1382.

    PubMed  CAS  Google Scholar 

  • Mo, Y-Y., and Geibel, M., Bonsall, R.F., and Gross, D.C., 1995, Analysis of sweet cherry (Prunus avium L.) leaves for plant signal molecules that activate the syrB genes for synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv. syringae, Plant Physiol. 107: 603–612.

    CAS  Google Scholar 

  • Mo, Y.-Y., and Gross, D.C., 1991, Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol. 173: 5784–5792.

    PubMed  CAS  Google Scholar 

  • Morgan, M.K., and Chatterjee, A.K., 1985, Isolation and characterization of Tn5 insertion mutants of Pseudomonas syringae pv. syringae altered in the production of the peptide phytotoxin syringotoxin, J. Bacteriol. 164: 14–18.

    PubMed  CAS  Google Scholar 

  • Morgan, M.K., and Chatterjee, A.K., 1988, Genetic organization and regulation of proteins associated with production of syringotoxin by Pseudomonas syringae pv. syringae, J. Bacteriol. 170: 5689–5697.

    PubMed  CAS  Google Scholar 

  • Mott, K.A., and Takemoto, J.Y., 1989, Syringomycin, a bacterial phytotoxin, closes stomata, Plant Physiol. 90: 1435–1439.

    Article  PubMed  CAS  Google Scholar 

  • Ovod, V., Rudolph, K., Knirel, Y., and Krohn, K. 1996, Immunochemical characterization of O polysaccharides composing the alpha-D-rhamnose backbone of lipopolysaccharide of Pseudomonas syringae and classification of bacteria into serogroups 01 and 02 with monoclonal antibodies, J. Bacteriol. 178: 6459–6465.

    PubMed  CAS  Google Scholar 

  • Paynter, V.A., and Alconero, A., 1979, A specific fluorescent antibody for detection of syringomycin in infected peach tree tissues, Phytopathology 69: 493–496.

    Article  CAS  Google Scholar 

  • Quigley, N.B., and Gross, D.C., 1994, Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules, Mol. Plant Microbe Interact. 7: 78–90.

    Article  PubMed  CAS  Google Scholar 

  • Quigley, N.B., Mo, Y.Y., and Gross, D.C., 1993, SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP-binding secretion proteins, Mol. Microbiol. 9: 787–801.

    Article  PubMed  CAS  Google Scholar 

  • Reidl, H.H., and Takemoto, J.Y., 1987, Mechanism of action of bacterial phytotoxin, syringomycin. Simultaneous measurement of early responses in yeast and maize, Biochim. Biophys. Acta 898; 59–69.

    Article  CAS  Google Scholar 

  • Rich, J.J., and Willis, D.K., 1997, Multiple loci of Pseudomonas syringae pv. syringae are involved in pathogenicity on bean: restoration of one lesion-deficient mutant requires two tRNA genes, J. Bacterial. 179: 2247–2258.

    CAS  Google Scholar 

  • Schaad, N.W., Azad, H., Peet, R.C., and Panopoulos, N.J., 1989, Identification of Pseudomonas syringae pv. phaseolicola by a DNA hybridization probe, Phytopathology 79: 903–907.

    Article  Google Scholar 

  • Segre, A., Bachmann, R.C., Ballio, A., Bossa, E, Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., and Takemoto, J.Y., 1989, The structure of syringomycins Al, E and G, FEBSLett. 255: 27–31.

    Article  CAS  Google Scholar 

  • Sinden, S.L., DeVay, J.E., and Beckman, P.A., 1971, Properties of syringomycin, a wide spectrum antibiotic and phytotoxin produced by Pseudomonas syringae and its role in the bacterial canker disease of peach trees, Physiol. Plant Pathol. 1: 199–213.

    Article  CAS  Google Scholar 

  • Sogn, J.A., 1976, Structure of the peptide antibiotic polypeptin, J. Med. Chem. 19: 1228–1231.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, K.N., Kim, K. H., and Takemoto, J.Y., 1998, PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains, Appl. Environ. Microbiol. 64: 226–230.

    PubMed  CAS  Google Scholar 

  • Takemoto, J.Y., 1992, Bacterial phytotoxin syringomycin and its interaction with host membranes, in: Molecular Signals in Plant—Microbe Communications, D.P.S. Verma, ed., CRC Press, Inc., Florida, USA.

    Google Scholar 

  • Takemoto, J.Y., Giannini, J.L., Vassey, T., and Briskin, D.P., 1989, Syringomycin effects on plasma membrane Ca“ transport, in: Phytotoxins and Plant Pathogenesis, A. Graniti, R.D. Durbin, and A. Ballio, eds., Springer-Verlag KG, Berlin, Germany.

    Google Scholar 

  • Takemoto, J.Y., Zhang, L., Taguchi, N., Tachikawa, T., and Miyakawa, T.,1991, Mechanism of action of the phytotoxin syringomycin: a resistant mutant of Saccharomyces cerevisiae reveals an involvement of Ca“ transport, J. Gen. Microbial. 137: 653–659.

    Google Scholar 

  • Tamura, K., Teraoka, T., Hosokawa, D., and Watanabe, M., 1992, Production of non-toxin producing mutant of beet leaf spot bacterium and its pathogenicity (in Japanese), Ann. Phytopath. Soc. Japan 58: 599–600.

    Article  Google Scholar 

  • Tamura, K., Teraoka, T., Hosokawa, D., and Watanabe, M., 1994, Some pathovars of Pseudomonas syringae producing syringomycin-like toxin, Ann. Phytopath. Soc. Japan 60: 478–482.

    Article  Google Scholar 

  • Vassilev, V., Lavermicocca, P., Di Giorgio, D., and lacobellis, N.S., 1996, Production of syringomycins and syringopeptins by Pseudomonas syringae pv. atrofaciens, Plant Pathol. 45: 316–322.

    Article  CAS  Google Scholar 

  • Vater, J., 1989, Lipopeptides, an interesting class of microbial secondary metabolites, in: Biologically Active Molecules: Identification, Characterization and Synthesis, Springer-Verlag, Berlin.

    Google Scholar 

  • Volksch, B., and Weingart, H., 1998, Toxin production by pathovars of Pseudomonassyringae and their antagonistic activities against epiphytic microorganisms, J. Basic. Microbiol. 38: 135–145.

    Article  PubMed  CAS  Google Scholar 

  • Xu, G-W., and Gross, D.C., 1988a, Evaluation of the role of syringomycin in plant pathogenesis by using Tn5 mutants of Pseudomonas syringae pv. syringae defective in syringomycin production, Appl. Environ. Microbiol. 54: 1345–1353.

    PubMed  CAS  Google Scholar 

  • Xu, G-W., and Gross, D.C., 1988b, Physical and functional analyses of the syrA and syrB genes involved in syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol. 170: 5680–5688

    PubMed  CAS  Google Scholar 

  • Winkelmann, G., Lupp, R., and Jung, G., 1980, Herbicolins—New peptide antibiotics from Erwinia herbicola, J. Antibiot. (Tokyo) 33: 353–358.

    Article  CAS  Google Scholar 

  • Zhang, J.H., Quigley, N.B., and Gross, D.C., 1995, Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism, J. Bacteriol. 177: 4009–4020.

    PubMed  CAS  Google Scholar 

  • Zhang, J.H., Quigley, N.B., and Gross, D.C., 1997, Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae, Appl. Environ. Microbiol. 63: 2771–2778.

    PubMed  CAS  Google Scholar 

  • Zhang, L., and Takemoto, J.Y., 1987, Effect ofPseudomonas syringae phytotoxin, syringomycin, on plasma membrane functions of Rhodotorula pilimanae, Phytopathology 77: 297–303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tamura, K., Teraoka, T., Yamaguchi, I. (2002). Toxicity of Syringomycins and Its Pathological Significance. In: Upadhyay, R.K. (eds) Advances in Microbial Toxin Research and Its Biotechnological Exploitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4439-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4439-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3384-3

  • Online ISBN: 978-1-4757-4439-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics