Advertisement

Molecular Biology of Bacillus Thuringiensis

  • Ming Sun
  • Lei Zhang
  • Ziniu Yu
Chapter

Abstract

Bacillus thuringiensis (Bt) is a Gram-positive bacterium, belonging to Genus 2, Bacillus, in Group 18, as classified in Bergey’s Manual of Determinative Bacteriology (ninth Edition). One of the characteristics of Bt is that proteinaceous crystals appear in the cells during sporulation. The parasporal crystals have been extensively researched and wildly applied in the world because of its specific insecticidal activities against many insects in the orders of Lepidoptera, Diptera, and Coleoptera, as well as some pests like plant/animal parasitic nematodes, mites, protozoan and fluke. According to the variation of flagellum antigen and other characteristics, 70 serotypes and 83 subspecies of B. thuringiensis were identified (Lacedet et al., 1999; Li Rongsen, unpublished). Different subspecies, even different bacterial strains, possess quite different kinds and quantities of insecticidal crystal proteins, resulting exuberance in the diversity of the toxicity. In recent ten years, some review articles elucidated the insecticidal crystal proteins and their genes in many aspects (Feitelson et al., 1992; Gill et al., 1992; Lereclus et al., 1989b, 1993; Aronson, 1993; Visser et aí.,1993 ; Yamamoto and Powell, 1993; Knowles, 1994; Schnepf et aí.,1998).

Keywords

Transposable Element Bacillus Thuringiensis Brush Border Membrane Replication Origin Crystal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, L.F., Brown, K.L., and Whiteley, H.R., 1991, Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter, J. Bacteriol. 173: 3846–3854.PubMedGoogle Scholar
  2. Adams, L.F., Mathewes, S., O’Hara, P., Petersen, A., and Gurtler, H., 1994, Elucidation of the mechanism of CrylllA overproduction in a mutagenized strain of Bacillus thuringiensis var. tenebrionis, Mol. Microbiol. 14: 381–389.PubMedCrossRefGoogle Scholar
  3. Adams, L.F., Visick, J.E., and Whiteley, H.R., 1989, A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli, J. Bacteriol. 171: 521–530.PubMedGoogle Scholar
  4. Adang, M.J., Stayer, M.J., Rocheleau, T.A., Leighton, J., Barker, R.F., and Thompson, D.V., 1985, Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta, Gene 36: 289–300.PubMedCrossRefGoogle Scholar
  5. Agaisse, H., and Lereclus, D., 1994b, Expression in Bacillus thuringiensis cryllIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spoûA mutant, J. Bacteriol 176: 4734–4741.PubMedGoogle Scholar
  6. Agaisse, H., and Lereclus, D., 1995, How does Bacillus thuringiensis produce so much insecticidal crystal protein?/ Bacteriol. 177: 6027–6032.Google Scholar
  7. Agaisse, H., and Lereclus, D., 1996, STAB-SD: a Shine-Dalgarno sequence in the 5’ untranslated region is a determinant ofmRNA stability, Mol. Microbiol. 20 (3): 633–643.PubMedCrossRefGoogle Scholar
  8. Agaisse, H., and Lereclus, D., 1994a, Structural and functional analysis of the promoter region involved in full expression of the cryllJA toxin gene of Bacillus thuringiensis, Mol. Microbiol. 13: 97–107.PubMedCrossRefGoogle Scholar
  9. Arantes, O., and Lereclus, D., 1991, Construcetion of cloning vectors for Bacillus thuringiensis, Gene 108: 115–119.PubMedCrossRefGoogle Scholar
  10. Aronson, A.I., 1993, The two faces of Bacillus thuringiensis: insecticidal proteins and post-exponential survival, Mol. Microbiol. 7: 489–496.Google Scholar
  11. Aronson, A.L., Beckman, W., and Dunn, P., 1986, Bacillus thuringiensis and related insect pathogens, Microbial. Rev. 50: 1–24.Google Scholar
  12. Asano, S., Bando, H., and Iizuka, T., 1993, Amplification and identification of cryll genes from Bacillus thuringiensis by PCR procedure, J. Seric. Sci. Jpn. 62: 223–227.Google Scholar
  13. Baum, A. and Gonzalez, J.M., Jr., 1992, Mode of replication, size, and distribution of naturally occurring plasmids in Bacillus thuringiensis, FEMSMicrobiol. Lett. 96: 143–148.CrossRefGoogle Scholar
  14. Baum, J.A., and Gilbert, M.P., 1991, Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids, J. Bacteriol. 173: 5280–5289.PubMedGoogle Scholar
  15. Baum, J.A., Coyle, D.M., Gilbert, M.P., Jany, C.S., and Gawron-Burke, C., 1990, Novel Cloning vectors for Bacillus thuringiensis,Appl. Environ. Microbial. 56 (11): 3420–3428.Google Scholar
  16. Baum, J.A., 1994, Tn5410, a new class II transposable element from Bacillus thuringiensis, J Bacterial. 176: 2835–2845.Google Scholar
  17. Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sinai, R., Mansherob, R., Khamraev, A., Troitskaya, E., Dubitsky, A., Berezina, N., and Margalith, Y., 1997, Extended screening by PCR for seven cry group genes from field-collected strains of Bacillus thuringiensis, Appl. Environ. Microbial. 63: 4883–4890.Google Scholar
  18. Bietlot, H., Vishnubhatla, I., Carey, P.R., Pozsgay, M., and Kaplan, H., 1990, Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis, Biochem. J. 267: 309–315.PubMedGoogle Scholar
  19. Bourque, S.N., Valero, J.R., Mercier, J., Lavoie, M.C., and Levesque, R.C., 1993, Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis, Appt Environ. Microbial. 59: 523–527.Google Scholar
  20. Brizzard, B.L., Schnepf, H.E., and Kronstad, J.W., 1991, Expression of the crylB crystal protein gene of Bacillus thuringiensis, Mol. Gen. Genet. 231: 59–64.PubMedCrossRefGoogle Scholar
  21. Brown, K.L., and Whiteley, H.R., 1988, Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes, Proc. Natl. Acad. Sci. USA 85: 4166–4170.PubMedCrossRefGoogle Scholar
  22. Brown, K.L., 1993, Transcriptional regulation of the Bacillus thuringiensis subsp. thompsoni crystal protein gene operon, J. Bacterial. 175: 7951–7957.Google Scholar
  23. Brown, K.L., and Whiteley, H.R., 1992, Molecular characterization of two novel crystal protein genes from Bacillus thuringiensis subsp. thompsoni, J. Bacterial. 174: 549–557.Google Scholar
  24. Carlson, C.R., and Kolsto, A.B., 1994, A complete physical map of a Bacillus thuringiensis, J. Bacterial. 175: 1053–1060.Google Scholar
  25. Carlton, B.C., and Gonzalez, J.M., Jr., 1985, Plasmid and delta-endotoxin in different subspecies of Bacillus thuringiensis, in: Molecular Biology of Microbial Differentiation, J. A. Hoch and P. Setlow, eds., American Society for Microbiology, Washington D.C., pp. 246–252.Google Scholar
  26. Carozzi, N.B., Kramer, V.C., Warren, G.W., Evola, S., and Koziel, M.G., 1991, Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles, Appl. Environ. Microbial. 57: 3057–3061.Google Scholar
  27. Ceron, J., Covarrubias, L., Quintero, R., Ortiz, A., Ortiz, M., Aranda, E., Lina, L., and Bravo, A., 1994, PCR analysis of the cry! insecticidal crystal family genes from Bacillus thuringiensis, Appl. Environ. Microbial. 60: 353–356.Google Scholar
  28. Chak, K.-F., Tseng, M.Y., and Yamamoto, T., 1994, Expression of the crystal protein gene under the control of the a-amylase promoter in Bacillus thuringiensis strains, Appl. Environ. Microbial. 60: 2304–2310.Google Scholar
  29. Chang, C., Yu, Y.-M., Dai, S.-M., Law, S.K., and Gill, S.S., 1993, High-level cry1VD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes, Appl. Environ. Microbial. 59: 815–821.Google Scholar
  30. Cheng, P., Wu, L., Yu, Z.N., and Aronson A., 1999, Subspieces-dependent regulation of Bacillus thuringiensis protoxin genes, Appl. Environ. Microbial. 65 (5): 1849–1858.Google Scholar
  31. Chilcott, C.N., Knowles, B.H., Ellar, D.J., and Drobniewski, F.A., 1990, Mechanism of action of Bacillus thuringiensis parasporal body, in: Bacterial Control of Mosquitoes and Blackflies Biochemistry, Genetics and Applications of Bacillus thuringiensis and Bacillus sphaericus, H. de Barjac and D. Sutherland, eds., Rutgers Universisty Press, New Brunswick, USA, pp. 44–65.Google Scholar
  32. Choma, C.T., Surewicz, W.K., Carey, P.R., Pozsgay, M., Raynor, T., and Kaplan, H., 1990, Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis. Structural implications, Eur. J. Biochem. 189: 523–527.PubMedCrossRefGoogle Scholar
  33. Convents, D., Houssier, C., Lasters, I., and Lauwereys, M., 1990, The Bacillus thuringiensis d-endotoxin: Evidence for a two domain structure of the minimal toxic fragment, J. Biol. Chem. 265: 1369–1375PubMedGoogle Scholar
  34. Crawford, D.N., and Harvey, W.R., 1988, Barium and calcium block Bacillus thuringiensis subsp. kurstaki dendotoxin inhibition of postassium current across isolated midgut of larval Manduca sexta, J. Exp. Biol. 137: 277–286.PubMedGoogle Scholar
  35. Crickmore, N., and Ellar, D.J., 1992, Involvement ofa possible chaperonin in the efficient expression ofa cloned Cry1IA d-endotoxin gene in Bacillus thuringiensis, Mol. Microbiol. 6: 1533–1537.PubMedCrossRefGoogle Scholar
  36. Crickmore, N., Wheeler, V.C., and Ellar, D.J., 1994, Use of an operon fusion to induce expression and crystallization ofa Bacillus thuringiensis d-endotoxin encoded by a cryptic gene, Mol. Gen. Genet. 242: 365–368.PubMedCrossRefGoogle Scholar
  37. Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., and Dean, D.H., 1998, Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins, Microbiol. Mol. Biol. Rev. 62: 807–813.Google Scholar
  38. Dankocsik, C., Donovan, W.P., and Jany, C.S., 1990, Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity, Mol. Microbiol. 4: 2087–2094.PubMedCrossRefGoogle Scholar
  39. Souza, M.T., Lecadet, M-M., and Lereclus, D., 1993, Full expression of the cry]/IA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription, J. Bacteriol. 175: 2952–2960.PubMedGoogle Scholar
  40. Dervyn, E., Poncet, S., Klier, A., and Rapoport, G., 1995, Transcriptional regulation of the cry1VD gene operon from Bacillus thuringiensis subsp. israelensis, J. Bacteriol. 177: 2283–2291.PubMedGoogle Scholar
  41. Donovan, W.P., Dankocsik, C.C., and Gilbert, M.P., 1988a, Molecular characterization ofa gene encoding a 72 kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis, J. Bacteriol. 170: 4732–4738.PubMedGoogle Scholar
  42. Donovan, W.P., Rupar, M.J., Slaney, A.C., Malvar, T., Gawron-Burke, M.C., and Johnson, T.B., 1992, Characterization of two genes encoding Bacillus thuringiensis insecticidal crystal proteins toxic to Coleoptera species, AppL Environ. Microbiol. 58: 3921–3927.PubMedGoogle Scholar
  43. Douek, J., Einav, M., and Zaritsky, A., 1992, Sensitivity to planting of Escherichia coli cells expressing the cytA gene from Bacillus thuringiensis var. israelensis, Mol. Gen. Genet. 232: 162–165.PubMedCrossRefGoogle Scholar
  44. Drobniewski, F.A., and Ellar, D.J., 1989, Purification and properties ofa 28-kilodalton hemolytic and mosquitocidal protein toxin of Bacillus thuringiensis subsp. darmstadiensis 73-E10–2, J. Bacteriol. 171: 3060–3067.PubMedGoogle Scholar
  45. Du, C., Martin, P.A.W., and Nickerson, K.W., 1994, Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals, Appl. Environ. MicrobioL. 60: 3847–3853.PubMedGoogle Scholar
  46. Ellis, R.J., and van der Vies, S.M., 1991, Molecular chaperones, Annu. Rev. Biochem. 60: 321–347.PubMedCrossRefGoogle Scholar
  47. Feitelson, J.S., Payne, J., and Kim, L., 1992, Bacillus thuringiensis: Insects and beyond, Bio/Technology 10: 271–275.CrossRefGoogle Scholar
  48. Feitelson, J.S., 1993, The Bacillu thuringiensis family tree, in: Advanced Engineered Pesticides L. Kim, ed., Marcel Dekker, Inc., New York, N.Y., pp. 63–71.Google Scholar
  49. Ferre, J., Real, M.D., Van Rie, J., Jansens, S., and Peferoen, M., 1991, Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in midgut membrane receptor, Proc. Natl. Acad. Sci. USA 88: 5119–5123.PubMedCrossRefGoogle Scholar
  50. Garnet, P.H., and Piot, J.-C., 1992, Characterization and properties ofa novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids, Gene 120: 17–26.CrossRefGoogle Scholar
  51. Garczynski, S.F., Crim, J.W., and Adang, M.J., 1991, Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis d-endotoxin by protein blot analysis, Appl. Environ. Microbiol. 57: 2816–2820.PubMedGoogle Scholar
  52. Ge, A.Z., Pfister, R.M., and Dean, D.H., 1990, Hyperexpression ofa Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product, Gene 93: 49–54.PubMedCrossRefGoogle Scholar
  53. Ge, A.Z., Rivers, D., Milne, R., and Dean, D.H., 1991, Functional domains of Bacillus thuringiensis insecticidal crystal proteins: refinement of the Heliothis virescens and Trichoplusia ni specifiity domains on CryIA(c), J. Biot Chem. 266: 17954–17958.Google Scholar
  54. Ge, A.Z., Shivsrova, N.I., and Dean, D.H., 1989, Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein, Proc. Natl. Acad. Sci. USA 86: 4037–4041.PubMedCrossRefGoogle Scholar
  55. Geiser, M., Schweitzer, S., and Grimm, C., 1986, The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kurhdl gene of subsp. kurstaki HD 1, Gene48: 109–118.Google Scholar
  56. Gill, S.S., Cowles, E.A., and Pietrantonio, P.V., 1992, The mode of action of Bacillus thuringiensis endotoxins, Ann. Rev. Entomol. 37: 615–636.CrossRefGoogle Scholar
  57. Glatron, M.F. and Rapoport, G., 1972, Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA, Biochimie. 54: 1291–1301.PubMedCrossRefGoogle Scholar
  58. Gonzalez, J.M., Jr., and Carlton, B.C., 1980, Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis, Plasmid 3: 92–98.PubMedCrossRefGoogle Scholar
  59. Gonzalez, J.M., Jr., and Carlton, B.C., 1982, Plasmid transfer in Bacillus thuringiensis, in: Genetic Exchange: A Celebration and a New Generation, U. N. Setreips, S. H. Goodall, W. R. Guild, and G. A. Wilson, eds., Marcel Dekker, Inc., New York, pp. 85–95.Google Scholar
  60. Gonzalez, J.M., Jr., and Carlton, B.C., 1984, A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis var. israelensis, Plasmid 11: 28–38.PubMedCrossRefGoogle Scholar
  61. Gonzalez, J.M., Jr., Brown, B.J., and Carlton, B.C., 1982, Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus, Proc. Natl. Acad Sci. USA 79: 6951–6955.PubMedCrossRefGoogle Scholar
  62. Gonzalez, J.M., Jr., Dulmage, H.T., and Carlton, B.C., 1981, Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis, Plasmid 5 (3): 352–365.PubMedCrossRefGoogle Scholar
  63. Haider, M.Z., and Ellar, D.J., 1987, Characterization of the toxicity and cytopathic specificity ofa cloned Bacillus thuringiensis crystal protein using insect cell culture, Mol. Microbiol. 1: 59–66.PubMedCrossRefGoogle Scholar
  64. Haider, M.Z., and Ellar, D.J., 1989, Functional mapping of an entomocidal d-endotoxin. Single amino acid changes produced by site-directed mutagenesis influence toxicity and specificity of the protein, J. Mol. Biol. 208: 183–194.PubMedCrossRefGoogle Scholar
  65. Haider, M.Z., and Ellar, D.J., 1988, Nucleotide sequence of a Bacillus thuringiensis aizawai ICI entomocidal crystal protein gene, Nucleic Acids Res. 16: 10927.PubMedCrossRefGoogle Scholar
  66. Haider, M.Z., Knowles, B.H., and Ellar, D.J., 1986, Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases, Eur. J. Biochem. 156: 531–540.PubMedCrossRefGoogle Scholar
  67. Haider, M.Z, Smith, G.P., and Ellar, D.J., 1989, Delineation of the toxin coding fragments and an insect-specificity region ofa dual toxicity Bacillus thuringiensis crystal protein gene, FEMS Microbiol. Lett. 58: 157–164.CrossRefGoogle Scholar
  68. Hannay, C.L., and Fitz-James, P., 1955, The protein crystals of Bacillus thuringiensis Berliner, Can. J Microbiol. 1: 694–709.PubMedCrossRefGoogle Scholar
  69. Hannay, C.L., 1953, Crystalline inclusions in aerobic spore-forming bacteria, Nature (London) 172: 1004.CrossRefGoogle Scholar
  70. Harvey, W.R., Cioffi, M., and Wolfersberger, M.G., 1986, Transport physiology of lepidopteran midgut in relation to the action of Bt delta-endotoxin, in: Fundamental and Applied Aspects of Invertebrate Pathology, J. M. Vlak, D. Peters and R. A. Samson, eds., Grafisch bedrijf Pousen and Looijen, Wageningen, pp. 11–14.Google Scholar
  71. Herrnstadt, C., Soares, G.G., Wilcox, E.R., and Edwards, D. L., 1986, A new strain on Bacillus thuringiensis with activity against coleopteran insects, Bio/Technology 4: 305–308.CrossRefGoogle Scholar
  72. Hodgman, T.C. and Ellar, D.J., 1990, Models for the structure and function of the Bacillus thuringiensis d-endotoxins determined by compilational analysis, DNA Sequence 1: 97–106.PubMedGoogle Scholar
  73. Hodgman, T.C., Ziniu. Y., Shen, J., and Ellar, D.J., 1993, Identification ofa cryptic gene associated with an insertion sequence not previously identified in Bacillus thuringiensis, FEMS Microbiol. Lett. 114: 23–30.Google Scholar
  74. Hofte, H., and Whiteley, H.R., 1989, Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev. 53: 242–255.PubMedGoogle Scholar
  75. Hofte, H., de Greve, H., Seurinck, J., Jansens, S., Mahillon, J., Ampe, C., Vandekerckhove, J., van Montagu, M., Zabeau, M., and Vaeck, M., 1986, Structural and functional analysis ofa cloned delta endotoxin of Bacillus thuringiensis berliner 1715, Eur. J. Biochem. 161: 273–280.PubMedCrossRefGoogle Scholar
  76. Hofte, H., Van Rie, J., Jansens, S., Van Houtven, A., Vanderbruggen, H., and Vaeck, M., 1988, Monoclonal antibody analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal crystal proteins of Bacillus thuringiensis, Appl. Environ. Microbiol. 54: 2010–2017.PubMedGoogle Scholar
  77. Huber, H.E., Luthy, P., Luthy, P., Cordier, J. L, 1981, The subunits of the parasporal crystal ofBacillus thuringiensis: size, linkage and toxicity, Arch. Microbiol. 129: 14–18.CrossRefGoogle Scholar
  78. lizuka, T., Faust, R.M., and Travers, R.S., 1981a, Isolation and partial characterization of extra-chromosomal DNA from serotypes of Bacillus thuringiensis pathogenic to Lepidoptera and Dipteran larvae by agarose gel electrophoresis, J Seri. Sci. Jpn. 50: 120–133.Google Scholar
  79. Iizuka, T., Faust, R.M., and Travers, R.S., 1981b, Comparative profiles ofextrachromosomal DNA in single and multiple crystalliferous strains of Bacillus thuringiensis var. kurstaki,. 1 Faculty of Agri. Hokkaido Univ. 60 (pt2): 143–151.Google Scholar
  80. Jacquet, F., Huffer, R., and Luthy, P., 1987, Specificity of Bacillus thuringiensis delta-endotoxin, Appl. Environ, Microbiol. 53: 500–504.Google Scholar
  81. Jensen, G.B., Andrup, L., Wilcks, A., Smidt, L., and Poulsen, O.M., 1996, The aggregation-mediated conjugation system of Bacillus thuringiensis subsp. isrealensis: host range and kinetics of transfer, Cur. Microbiol. 33: 228–236.CrossRefGoogle Scholar
  82. Juarez-Perez, V.M., Ferrandis, M.D., and Frutos, R., 1997, PCR-based approach for detection of novel Bacillus thuringiensis cry genes, Appl. Environ. Microbiol. 63: 2997–3002.PubMedGoogle Scholar
  83. Kalman, S., Kiehne, K.L., Libs, J.L., and Yamamoto, T., 1993, Cloning of a novel crylC-type gene from a strain of Bacillus thuringiensis subsp galleriae, Appl. Environ. Microbiol. 59 (4): 1131–1137.PubMedGoogle Scholar
  84. Knight, P.J.K., Crickmore, N., and Ellar, D.J., 1994, The receptor for Bacillus thuringiensis Cry IA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminaopeptidase N, Mol. Microbiol. 11: 429–436.PubMedCrossRefGoogle Scholar
  85. Knowles, B.H., and Ellar, D.J., 1987, Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis d-endotoxins with different insect specificity, Biochim. Biophys. Acta. 924: 509–518.CrossRefGoogle Scholar
  86. Knowles, B.H., Blatt, M.R.M., Tester, M., Hormel!, J.M., Carroll, J., Menestrina, G., and Ellar, D.J., 1989, A cytolytic d-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers, FEBS Lett. 244: 259–262.PubMedCrossRefGoogle Scholar
  87. Knowles, B.H., Knight, P.J.K., and Ellar, D.J., 1991, N-acetyl galactosamine is part of the receptor in insct gut epithelia that recognisis an insecticidal protein from Bacillus thuringiensis, Proc. Roy. Soc. Lond. B. 245: 31–35.CrossRefGoogle Scholar
  88. Knowles, B.H., Nicholls, C.N., Armstrong, G., Tester, M., and Ellar, D. J., 1990, Broad spectrum cytolytic toxins made by Bacillus thuringiensis, in: Invertebrate Pathology and Microbial Control, D. Pinnock, ed., Society for Invertebrate Pathology, Adelaide, Anotralia, pp. 283–287.Google Scholar
  89. Knowles, B.H., White, P.J., Nicholls. C.N., and Ellar, D.J., 1992, A broad spectrum cytolytic toxin from Bacillus thuringiensis var. kyushuensis, Pro. Roy. Soc. Land. B. 248: 1–7.Google Scholar
  90. Knowles, B.H., 1994, Mechanism of action ofBacillus thuringiensis insecticidal S-endotoxins, Adv. Insect Physiol. 24: 275–307.CrossRefGoogle Scholar
  91. Knowles, B.J., and Dow, J.A.T., 1993, The crystal, -endotoxins of Bacillus thuringiensis: models for their mechanism of action of the insect gut, BioAssays 15: 469–476.CrossRefGoogle Scholar
  92. Koni, P.A. and Ellar, D.J., 1993, Cloning and characterization of a novel Bacillus thuringiensis cytolytic deltaendotoxin, J. Mol. Biol. 229: 319–327.PubMedCrossRefGoogle Scholar
  93. Koni, P.A., and Ellar, D.J., 1994, Biochemical characterization of Bacillus thuringiensis cytolytic S-endotoxins, Microbiology 140: 1869–1880.PubMedCrossRefGoogle Scholar
  94. Kronstad, J.W., and Whiteley, H.R., 1984, Inverted repeat sequences flank a Bacillus thuringiensis crystal protein gene, J Bacteriol. 160: 95–102.PubMedGoogle Scholar
  95. Kronstad, J.W., and Whiteley, H.R., 1986, Three classes of homologous Bacillus thuringiensis crystal-protein genes. Gene 43: 29–40.PubMedCrossRefGoogle Scholar
  96. Kronstad, J.W., Schnepf, H.E., and Whiteley, H.R., 1983, Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bacteriol. 154: 419–428.PubMedGoogle Scholar
  97. Lacedet, M., Frachon, E., Dumanoir, V.C., Ripouteau, H., Hamon, S., Laurent, P., and Thiery, I., 1999, Updating the H-antigen classification of Bacillus thuringiensis, J Appl. Microbiol. 86: 660–672.Google Scholar
  98. Lereclus, D., Arante’s, O., Chaufaux, J., and AndLecadet, M.-M., 1989a, Transformation and expression of a cloned S-endotoxin gene in Bacillus thuringiensis, FEMS Microbiol. Lett. 60: 211–218.Google Scholar
  99. Lereclus, D., and Arantes, O., 1992, spbA locus ensures the segregational stability of pHT1030, a novel type of Gran-positive replicon, Mol. Microbiol. 6: 35–46.Google Scholar
  100. Lereclus, D., Bourgouin, C., Lecadet, M.-M., Klier, A., and Rapoport, G., 1989b, Role, structure and molecular organization of the genes coding for the parasporal S-endotoxins of Bacillus thuringiensis, in: Regulation ofProcaryotic Development, I. Smith, R. A. Slepecky and P. Setlow, eds., American Society for Microbiology, Washington D C, pp. 255–276.Google Scholar
  101. Lereclus, D., Deleclus, A., and Lecadet, M.-M., 1993, Diversity of Bacillus thuringiensis toxins and genes, in: Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, P. E. Entwistle, J. S. Cory, M. J. Bailey and S. Higgs, eds., John Wiley and Sons Ltd., Chichester, pp. 37–69.Google Scholar
  102. Lereclus, D., Guo, S., Sanchis, V., and Lecadet, M.-M., 1988, Characterization of two Bacillus thuringiensis plasmids whose replication is thermosensitive in B. subtilis, FEMSMicrobiol. Lett. 49: 417–422.CrossRefGoogle Scholar
  103. Lereclus, D., Menou, G., and Lecadet, M.-M., 1983, Isolation of a DNA sequence related to several plasmids from Bacillus thuringiensis after a mating involving the Streptococcus faecalis plasmid pAMb1, Mol. Gen. Genet. 191: 307–313.PubMedCrossRefGoogle Scholar
  104. Lereclus, D., Ribier, J., Klier, A., Menou, G., and Lecadet, M.-M., 1984, A transposon-like structure related to the S-endotoxin gene of Bacillus thuringiensis, EMBO J. 3: 2561–2567.PubMedGoogle Scholar
  105. Levinson, B.L., Kasyan, K.J., Chiu, S.S., Currier, T.C., and Gonzalez, J.M.Jr., 1990, Identification of b-exotoxin production, plasmids encoding b-exotoxin and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatography, J. Bacteriol. 172: 3172–3179.PubMedGoogle Scholar
  106. Li, J., Carroll, J., and Ellar, D.J., 1991, Crystal structure of insecticidal d-endotoxin from Bacillus thuringiensis at 2.5 A resolution, Nature (London) 353: 815–821.CrossRefGoogle Scholar
  107. Liu, Z., Sun, M., Chen, Y., and Yu, Z., 1999, The influence of the 20kDa Protein from Bacillus thuringiensis subsp. israelensis on the cytolytic activity of CytA., Acta Genetica Sinica 26 (1): 81–86.PubMedGoogle Scholar
  108. Luthy, P., and Ebersold, H.R., 1981, Bacillus thuringiensis delta-endotoxins: histopathology and molecular mode of action, in: Pathogenesis of Invertebrate Microbial Diseases, E. W. Davidson, ed., Allanheld, New Jersey, pp. 235–267.Google Scholar
  109. Madsen, S.M., Andrup, L., and Boe, L., 1993, Fine mapping and DNA sequence of replication functions of Bacillus thuringiensis plasmid pTX14–3, Plasmid 30: 119–130.PubMedCrossRefGoogle Scholar
  110. Mahillon, J., and Seurinck, J., 1988, Complete nucleotide sequence of pG12, a Bacillus thuringiensis plasmid containing Tn4430, Nucleic Acids Res. 16: 11827–11828.PubMedCrossRefGoogle Scholar
  111. Mahillon, J., Hespel, F., Pierssens, A.M., and Delcour, J., 1988, Cloning and partial characterization of three small cryptic plasm ids from Bacillus thuringiensis, Plasmid 19: 169–173.PubMedCrossRefGoogle Scholar
  112. Mahillon, J., Rerso hazy, R., Hallet, B., and Delcour, J., 1994, IS231 and other Bacillus thuringiensis transposable elements: a review, Genetica 93: 13–26.PubMedCrossRefGoogle Scholar
  113. Malvar, T., and Baum, J.A., 1994, Tn5401 disruption of the spoOFgene, identified by direct chromosomal sequencing, results in CrylIIA overproduction in Bacillus thuringiensis, J. Bacteriol. 176: 4750–4753.PubMedGoogle Scholar
  114. Malvar, T., Gawron-Burke, C., and Baum, J.A., 1994, Overexpression ofBacillus thuringiensis HknA, a Histidine Protein Kinase Homolog, bypasses early Spo-mutations that result in CryIIIA overproduction, J. Bacteriol. 176: 4742–4749.PubMedGoogle Scholar
  115. Masson, L., Bosse, M., Prefontaine, G., Peloquin, L., Lau, P. C. K., and Brousseau, R., 1990a, Characterization of parasporal crystal toxins of Bacillus thuringiensis subsp. kurstaki strains NRD-12 and HD-l. Use of oligonucleotide probes and cyanogen bromide mapping, in: Analytical Chemistry ofBacillus thuringiensis, L. A. Hickle and W. L. Fitch, eds., American Chemical Society, Washington D C, pp. 61–69.CrossRefGoogle Scholar
  116. Masson, L., Prefontaine, G., Peloquin, L., Lau, P.C., and Brousseau, R., 1990b, Comparative analysis of the individual protoxin components in Pl crystals of Bacillus thuringiensis subsp. kurstaki isolates NRD-12 and HD-1, Biochem.1 269: 507–512.Google Scholar
  117. Mclean, K.M., and Whiteley, H.R., 1987, Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp. israelensis, J. Bacteriol. 169 (3): 1017–1023.PubMedGoogle Scholar
  118. Minnich, S.A., and Aronson, A.I., 1984, Regulation of protoxin synthesis in Bacillus thuringiensis, J. Bacteriol. 158: 447454.Google Scholar
  119. Nagamatsu, Y., Itai, Y., Hatanaka, C., Funatsu, G., and Hayashi, K., 1984, A toxic fragment from the entomocidal crystal protein of Bacillus thuringiensis, Agric. Biol. Chem. 48: 611–619.CrossRefGoogle Scholar
  120. Oddou, P., Hartmann, H., and Geiser, M., 1991, Identification and characterization of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis S-endotoxins, Eur. J. Biochem. 202: 673–680.PubMedCrossRefGoogle Scholar
  121. Ozawa, K., and Iwahana, H., 1986, Involvement of a transmissible plasm id in heat-stable exotoxin and S-endotoxin production in Bacillus thuringiensis subspecies darmstadiensis, Curr. Microbiol. 13: 337–340.CrossRefGoogle Scholar
  122. Pang, Y., Yu, J., and Deng, R., 1999, Molecular chaperone p21 genes from Bacillus thuringiensis, in: Biotchnology of Bacillus thuringiensis, Vol 3, Z. Yu, M. Sun and Z. Liu, eds., Science Press, Beijing, pp. 99–100.Google Scholar
  123. Carey, P.R., Lessard, T., Yaguchi, M., and Pusztai, M., 1994, Isolation, Quantitation and Purification ofInsecticidal Proteins from Bacillus thuringiensis, United States Patent Number 5, 356, 788.Google Scholar
  124. Rang, C., Lacey, L.A., and Frutos, R., 1999, The crystal proteins from Bacillus thuringiensis subsp. thompsoni are components of a binary toxin, in: Biotchnology of Bacillus thuringiensis, Vol 3, Z. Yu, M. Sun and Z. Liu, eds., Science Press, Beijing, pp. 77.Google Scholar
  125. Ribier, J., and Lecadet, M-M., 1973, Etude ultrastructural et cinetique de la sporulation ed Bacillus thuringiensis var. Berliner 1715. Remarques sur la formaetion de l’inclusion parasporale, Ann. Microbiol(Inst. Pasteur) 124A: 311–344.Google Scholar
  126. Ribier, J., and Lecadet, M.-M., 1981, Bacillus thuringiensis var. Berliner 1715. Isolement et caracterisation de mutants de sporulation, C. R. Acad. Sc. Paris (Serie 111) 292: 803–808.Google Scholar
  127. Schnepf, E., Crickmore, N., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., and Dean, D.H., 1998, Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev. 62: 775–806Google Scholar
  128. Schnepf, H.E., and Whiteley, H.R., 1985, Delineation of a toxin-encoding segment of a Bacillus thuringiensis crystal protein gene, J. Biol. Chem. 260: 6273–6280.PubMedGoogle Scholar
  129. Schnepf, H.E., and Whiteley, H.R., 1981, Cloning and expression of the Bacillus thuringiensis crystal protein gene, in Escherichia coli, Proc. Natl. Acad. Sci. USA 78: 2893–2897.Google Scholar
  130. Schnepf, H.E., Wong, H.C., and Whiteley, H.R., 1985, The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence,’ Biol Chem. 260: 6264–6272.Google Scholar
  131. Sekar, V., Thompson, D.V., Maroney, M.J., Bookland, R.G., and Adang, M.J., 1987, Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis, Proc. Natl Acad Sci. USA 84: 7036–7040.PubMedCrossRefGoogle Scholar
  132. Sekar, V., 1988, The insecticidal crystal protein gene is expressed in vegetative cells of Bacillus thuringiensis var. tenebrionis, Curr. Microbiol. 17: 347–349.CrossRefGoogle Scholar
  133. Shivakumar, A.G., Gundling, G.J., Benson, T.A., Casuto, D., Miller, M.F., and Spear, B.B., 1986, Vegetative expression of the -endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis, J. Bacteriol. 166: 194–204.PubMedGoogle Scholar
  134. Slaney, A:C., Robbins, H.L., and English, L., 1992, Mode of action of Bacillus thuringiensis toxin CryIIIA: an analysis of toxicity in Leptinotarsa decemlineata(Say) and Diabrotica undecempunctata howardi Barber, Insect Biochem. Mol. Biol. 22: 9–18.Google Scholar
  135. Sohesser, J.H., and Bulla, L.A., 1978, Toxicity of Bacillus thuringiensis spores to the tobacco homworm, Manduca sexta, Appl. Environ. Microbial. 35: 121–123.Google Scholar
  136. Stahly, D.P.; Dingman, D.W., Bulla, L.A., and Aronson, A.I., 1978, Possible origin and function of the parasporal crystals in Bacillus thuringiensis, Biochem. Biophys. Res. Commun. 84: 581–588.PubMedCrossRefGoogle Scholar
  137. Sun, M., Liu, Z., Wu, L., Dean, D.H., and YU, Z., 1996, Restriction location and sequence of insecticidal protein gene cry218 in Bacillus thuringiensis YBT-1520, The 2nd Pacific Rim Conference on Biotech-nology of Bacillus thuringiensis and its Impacts to Environment, pp. 102–115.Google Scholar
  138. Sun, M., Wei, F., Liu, Z., and Yu, Z., 2000b, Cloning of plasmid pBMB2062 in Bacillus thuringiensis strain YBT- 1520 and construction of plasmid vector with genetic stability, Acta Genetica Sinica 27 (10): 932–938.PubMedGoogle Scholar
  139. Thiery, I., Delecluse, A., Tamayo, M.C., and Orduz, S., 1997, Identification of a gene for Cyt1 A-like hemolysin from Bacillus thuringiensis subsp. medellin and expression in a crystal-negative B. thuringiensis strain, Appl. Environ. Microbi. 63 (2): 468–473.Google Scholar
  140. Thomas, W.E., and Ellar, D.J., 1983a, Bacillus thuringiensis var. israelensis crystal 5-endotoxin: effects on insect and mammalian cells in vitro and in vivo, J. Cell Sci. 60: 181–197.Google Scholar
  141. Thomas, W.E., and Ellar, D.J., 1983b, Mechanism of action of Bacillus thuringiensis var. israelensis insecticidal 5- endotoxin, FEBS Lett. 154: 362–368.PubMedCrossRefGoogle Scholar
  142. Van Rie, J., Jansens, S., Ho fte, H., Degheele, D., and Van Mellaert, FL, 1989, Specificity of Bacillus thuringiensis delta-endotoxins: importance of specific receptors on the brush border membrane of the midgut of target insects, Eur. J. Biochem. 186: 239–247.PubMedCrossRefGoogle Scholar
  143. Van Rie, J., Jansens, S., Ho’lte, H., Degheele, D., and Van Mellaert, H., 1990a, Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis 5-endotoxin, Appl. Environ. Microbiol. 56: 1378–1385.PubMedGoogle Scholar
  144. Visick, J.E., and Whiteley, H.R., 1991, Effect of a 20-ki lodalton protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli, J. Bacteriol. 173: 1748–1756.PubMedGoogle Scholar
  145. V isser, B., Bosch, D., and Honee, G., 1993, Domain-function studies of Bacillus thuringiensis crystal proteins: a genetic approach, in: Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, P. E. Entwistle, J. S. Cory, M. J. Bailey and S. Higgs, eds., John Wiley and Sons Ltd., Chichester, pp. 71–88.Google Scholar
  146. Waalwijk, C., Dullemans, A.M., vanWorkum, M.E.S, and Visser, B., 1985, Molecular cloning and nucleotide sequence of the Mr 28000 crystal protein gene of Bacillus thuringiensis subsp. israelensis, Nucleic. Acids. Res. 13: 8206–8217.CrossRefGoogle Scholar
  147. Ward, E.S.; and Ellar, D.J., 1986a, Bacillus thuringiensis var. israelensis 8-endotoxin: Nucleotide sequence and characterization of the transcripts in Bacillus thuringiensis and Escherichia coli, J. Mol. Biol. 191: 1–11.Google Scholar
  148. Ward, E.S., Ellar, D.J., and Chilcott, C.N., 1988, Single amino acid changes in the Bacillus thuringiensis var israelensis S-endotoxin affect the toxicity and expression of the protein, J. Mol. Biol. 202: 527–535.PubMedCrossRefGoogle Scholar
  149. Ward, E.S., Ridley, A.R., Ellar, D.J., and Todd, J.A., 19866, Bacillus thuringiensis var. israelensis 5-endotoxin: Cloning and expression of the toxin in sporogenic and asporogenic strains of Bacillus subtilis, J. Mol. Biol. 191: 13–22.Google Scholar
  150. Whiteley, H.R., and Schnepf, H.E., 1986 The molecular biology of parasporal crystal body formation in Bacillus thuringiensis, Ann. Rev. Microbiol. 40: 549–576.CrossRefGoogle Scholar
  151. Widner, W.R., and Whiteley, H.R., 1989, Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificity, J. Bacteriol. 171: 965–974.PubMedGoogle Scholar
  152. Winder, W.R., and Whiteley, H.R., 1990, Location of the dipteran specificity region in a lepidopteran-dipteran crystal protein from Bacillus thuringiensis, J. Bacteriol. 172: 2826–2832.Google Scholar
  153. Wolfersberger, M.G., 1990, The toxicity of two Bacillus thuringiensis d-endotoxins to gypsy moth larvae is inversely related to the affmity of binding sites on midgut brush border membranes for the toxins, Experientia 46: 475–477.PubMedCrossRefGoogle Scholar
  154. Wolfersberger, M.G., 1992, V-ATPase-engergized epithelia and biological insect control, J. Exp. Biol. 172: 377–386.PubMedGoogle Scholar
  155. Wong, H.C., Schnepf, H.E., and Whiteley, H.R., 1983, Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene, J. Biol. Chem. 258: 1960–1967.PubMedGoogle Scholar
  156. Wong, H.C., and Chang, S., 1986, Identification of a positive retroregulator that stabilizes mRNAs in bacteria, Proc. Natl. Acad. Sci. USA 83 (10): 3233–3237.PubMedCrossRefGoogle Scholar
  157. Wong, H.C., Schnepf, H.E., and Whiteley, H.R., 1983, Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene, J. Biol. Chem. 258 (3): 1960–1967.PubMedGoogle Scholar
  158. Wu, D. and Federici, B.A., 1993, A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis, J. Bacteriol. 175: 5276–5280.PubMedGoogle Scholar
  159. Yamamoto, T., and McLaughlin, R.E., 1981, Isolation ofa protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larvae Aedes taeniarhynchus, Biochem. Biophys. Res. Commun. 103: 414–421.Google Scholar
  160. Yamamoto, T., Ehmann, A., Gonzalez, J.M., Jr., and Carlton, B. C., 1988a, Expression of three genes coding for 135kilodalton entomocidal proteins in Bacillus thuringiensis kurstaki, Curr. Microbiol. 17: 5–12.CrossRefGoogle Scholar
  161. Yamamoto, T., and Powell, G.K., 1993, Bacillus thuringiensis crystal proteins: recent advances in understanding its insecticidal activity, in: Advanced Engineered Pesticides, L. Kim, ed., Marcel Dekker, Inc., New York, pp. 3–42.Google Scholar
  162. Yoshisue, H., Fukada, T., Yoshida, K.-I., Sen, K., Kurosawa, S.-I., Sakai, H., and Komano, T., 1993a, Transcriptional regulation of Bacillus thuringiensis subsp. israelensis mosquito larvicidal crystal protein gene cryIVA, J. Bacteriol. 175: 2750–2753PubMedGoogle Scholar
  163. Yoshisue, H., Nishimoto, T., and Komano, T., 1993b, Identification of a promoter for the crystal protein-encoding gene cryIVB from Bacillus thuringiensis subsp. israelensis, Gene 137: 247–251.PubMedCrossRefGoogle Scholar
  164. Zakharyan, R.A., Aagabalyan, A.S., Chil-Akopya, L.A., Gasparyan, N. S., Bakunts, K. A., Tatevosyan, P. E., and Afrikyan, E. K., 1976, Possible role ofextrachromosomal DNA in the formation of the entomocidal endotoxin of Bacillus thuringiensis. Doklady Akademii Nauk Aarmenian USSR 63: 42–47Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ming Sun
    • 1
  • Lei Zhang
    • 1
  • Ziniu Yu
    • 1
  1. 1.College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan, HubeiP.R. China

Personalised recommendations