The Structure and Function of Chromatin

Part of the Advances in Human Genetics book series (AHUG, volume 3)


Biochemical and genetic studies have produced a vast fund of knowledge concerning gene action and regulation in prokaryotes. In these organisms the DNA is exposed rather nakedly to the world, protected primarily by the cell membrane. In eukaryotes the DNA seems far better shielded, being enmeshed in histone and nonhistone proteins and sequestered behind both the cell and the nuclear membrane. These differences have led to a considerable degree of caution in the application of this knowledge of prokaryotes to problems of gene regulation in eukaryotes, and rightly so. There are, however, several observations which suggest that higher organisms may have picked up a number of fundamental genetic tricks from their lowly predecessors. It has frequently been suggested that eukaryotes must do things differently from prokaryotes, until proven otherwise. It may be prudent to reverse this line of thought and suggest that they do things the came until proven different. The following similarities suggest this. (1) T he basic genetic dogmas concerning DNA replication, transcription, andlation are similar, (2) The genetic code is the same. (3) Both systems appear to make use of cyclic AMP as a basic mediator for, humoral or diffusible, signals. (4) In both systems DNA synthesis may be controlled at membranes. (5) Both make use of different types of RNA polymerase and RNA polymerase cofactors. (6) Recent studies of polylysine binding to chromatin suggest the eukaryotic DNA may not be so thoroughly enmeshed. in Protein as once thought. (7) The visualization of genes in action by electron microscopic techniques intimates that genes are spaced and read in a similar manner. And finally, (8) merely because the clustering of related genes is unusual in higher organisms is no reason in itself to totally discard the promoter-operator-repressor concept as a way of regulating single structural genes. This system has provided an immense amount of data concerning the manner in which proteins interact with specific DNA sequences to control the attachment and utilization of RNA polymerase. It is hard to imagine that eukaryotes, being presented with such a superb mechanism for controlling DNA transcription, would totally discard it and opt for something different. It is far more likely that they would build on to this solid foundation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abuelo, J. G., and D. E. Moore, The human chromosome. Electron microscopic observations on chromatin fiber organization, J. Cell Bio!. 41: 73 (1969).CrossRefGoogle Scholar
  2. la. Adkisson, K. P., W. J. Perreault, and H. Gay, Differential fluorescent staining of Drosophila chromosomes with quinacrine mustard, Chromosoma 34: 190 (1971).CrossRefGoogle Scholar
  3. 2.
    Adler, A. J., B. Schallhause, T. A. Langan, and G. D. Fasman, Altered conformational effects of phosphorylated lysine-rich histone (f-1) in f-l-deoxyribonucleic acid complexes. Circular dichroism and immunological studies, Biochemistry 10: 909 (1971).PubMedCrossRefGoogle Scholar
  4. 3.
    Alberts, B. M., F. J. Amodio, M. Jenkins, E. D. Gutmann, and F. L. Ferris, Studies with DNA-cellulose chromatography. I. DNA-binding proteins from Escherichia coli, Symp. Quant. Biol. 23: 289 (1968).CrossRefGoogle Scholar
  5. 4.
    Alberts, B. M., and L. Frey, T4 bacteriophage gene 32: A structural protein in the replication and recombination of DNA, Nature 227: 1313 (1970).PubMedCrossRefGoogle Scholar
  6. 5.
    Alfert, M., Variations in cytochemical properties of cell nuclei, Exp. Cell Res. Suppl. 6: 227 (1958).Google Scholar
  7. 6.
    Alfert, M., and N. K. Das, Evidence for control of the rate of nuclear DNA synthesis by the nuclear membrane in eukaryotic cells, Proc. Nat. Acad. Sci. U.S. 63: 123 (1969).CrossRefGoogle Scholar
  8. 7.
    Allfrey, V. G., The role of chromosomal proteins in gene activation, in “Biochemistry of Cell Division” (R. Baserga, ed.) Charles Thomas, Springfield, 111. (1969).Google Scholar
  9. 8.
    Allfrey, V. G., M. M. Daly, and A. E. Mirsky. Some observations on protein metabolism in chromosomes of non-dividing cells, J. Gen. Physiol. 38: 415 (1955).PubMedCrossRefGoogle Scholar
  10. 9.
    Allfrey, V. G., R. Faulkner, and A. E. Mirsky, Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis, Proc. Nat. Acad. Sci. U.S. 51: 786 (1964).CrossRefGoogle Scholar
  11. 10.
    Allfrey, V. G., V. C. Littau, and A. E. Mirsky, On the role of histones in regulating ribonucleic acid synthesis in the cell nucleus, Proc. Nat. Acad. Sci. U.S. 49: 414 (1963).CrossRefGoogle Scholar
  12. 11.
    Allfrey, V. G., and A. E. Mirsky, Mechanisms of synthesis and control of protein and ribonucleic acid synthesis in the cell nucleus, Cold Spr. Harb. Symp. Quant. Bio!. 28: 247 (1963).CrossRefGoogle Scholar
  13. 12.
    Amaldi, R., and M. Buongiorno-Nardelli, Molecular hybridization of Chinese hamster 5S, 4S and “Pulse-labeled” RNA in cytological preparations, Exp. Cell Res. 65: 329 (1971).PubMedCrossRefGoogle Scholar
  14. 13.
    Anderson, T. F., Technique for the preservation of three-dimensional structure in preparing specimens for the electron microscope, Trans. N.Y. Acad. Sci. 13: 130, Ser. I I (1951).Google Scholar
  15. Ando, T., and K. Suzuki, The amino acid sequence of the second component of clupeine, Biochim. Biophys. Acta 121: 427 (1966).Google Scholar
  16. 15.
    Ando, T., and K. Suzuki, The amino acid sequence of the third component of cul-peine, Biochim. Biophys. Acta 140: 375 (1967).PubMedCrossRefGoogle Scholar
  17. 16.
    Arrighi, F. E., M. Mandel, J. Bergendahl, and T. C. Hsu, Buoyant densities of DNA of mammals, Biochem. Genet. 4: 367 (1970).PubMedCrossRefGoogle Scholar
  18. 17.
    Arrighi, F. E., T. C. Hsu, P. Saunders, and G. F. Saunders, Localization of repetitive DNA in the chromosomes of Microtus agrestis by means of in situ hybridization, Chromosoma 32: 224 (1970).PubMedGoogle Scholar
  19. 18.
    Arrighi, F. E., and T. C. Hsu, Localization of heterochromatin in human chromosomes, Cytogenetics 10: 81 (1971).PubMedCrossRefGoogle Scholar
  20. 19.
    Arrighi, F. E., M. J. Getz, G. F. Saunders, P. Saunders, and T. C. Hsu, Location of various families of human DNA on human çhromosomes, 4th Int. Congr. Human Genetics, Paris, September, 1971, and Excerpta Medica ICS 233: 18 (1971).Google Scholar
  21. 20.
    Attardi, G., H. Parnas, M.-L. H. Hwang, and B. Attardi, Giant size rapidly labeled nuclear ribonucleic acid and cytoplasmic messenger ribonucleic acid in immature duck erythrocytes, J. Mol. Biol. 20: 145 (1966).PubMedCrossRefGoogle Scholar
  22. 21.
    Bahr, G. F., Human chromosome fibers. Considerations of DNA-protein packing and of looping patterns, Exp. Cell Res. 62: 39 (1970).PubMedCrossRefGoogle Scholar
  23. 22.
    Bajer, A., Subchromatid structure of chromosomes in the living state, Chromosoma 17: 291 (1965).PubMedCrossRefGoogle Scholar
  24. 23.
    Barnicot, N. A., and H. E. Huxley, Electron microscope observations on mitotic chromosomes, Quart. J. Micros. Sci. 106: 197 (1965).Google Scholar
  25. 24.
    Barr, M. L., and E. G. Bertram, A morphological distinction between neurones of the male and female and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis, Nature 163: 676 (1949).PubMedCrossRefGoogle Scholar
  26. 25.
    Barr, G. C., and J. A. V. Butler, Histones and gene function, Nature 199: 1170 (1963).PubMedCrossRefGoogle Scholar
  27. 26.
    Bautz, E. K. F., F. A. Bautz, and J. J. Dunn, E. coli a factor: A positive control element in phage T4 development, Nature 223: 1022 (1969).PubMedCrossRefGoogle Scholar
  28. 27.
    Bautz, E. K. F., and F. A. Bautz, Initiation of RNA synthesis: The function of a in the binding of RNA polymerase to promoter sites, Nature 226: 1219 (1970).PubMedCrossRefGoogle Scholar
  29. 28.
    Baxter, J. D., and Tomkins, G. M., The relationship between gluco-corticoid binding and tyrosine aminotransferase induction in hepatoma tissue culture cells, Proc. Nat. Acad. Sci. U.S. 65: 709 (1970).Google Scholar
  30. 29.
    Beckwith, J., Restoration of operon activity by suppressors, Biochim. Biophys. Acta 76: 162 (1963).PubMedCrossRefGoogle Scholar
  31. 30.
    Beermann, W., “Riesenchromosomen Protoplasmatologia,” Springer-Verlag, Vienna (1962).Google Scholar
  32. 31.
    Beermann, W., Gene action at the level of the chromosome, in “Heritage from Mendel,” (R. A. Brink, ed.), p. 179, University of Wisconsin Press, Madison (1967).Google Scholar
  33. 32.
    Bekhor, I., J. Bonner, and G. K. Dahmus, Hybridization of chromosomal RNA to native DNA, Proc. Nat. Acad. Sci. U.S. 62: 271 (1969).Google Scholar
  34. 33.
    Bekhor, I., G. M. Kung, and J. Bonner, Sequence-specific interaction of DNA and chromosomal protein, J. Mol. Biol. 39: 351 (1969).Google Scholar
  35. 34.
    Bender, H. A., H. J. Barr, and R. A. Ostrowski, Asynchronous DNA synthesis in a duplicated region of Drosophila melanogaster, Nature New Biology 231: 217 (1971).PubMedGoogle Scholar
  36. 35.
    Benjamin, W., O. A. Levander, A. Gellhorn, and R. H. DeBellis, An RNA-histone complex in mammalian cells: The isolation and characterization of a new RNA species, Proc. Nat. Acad. Sci. U.S. 55: 858 (1966).CrossRefGoogle Scholar
  37. 36.
    Benjamin, W., and A. Gellhorn, Acidic proteins of mammalian nuclei: isolation and characterization, Proc. Nat. Acad. Sci. U.S. 59: 262 (1968).CrossRefGoogle Scholar
  38. 37.
    Ben-Porat, T., A. Stere, and A. S. Kaplan, The separation of nascent deoxyribonucleic acid from the remainder of the cellular deoxyribonucleic acid, Biochim. Biophys. Acta 61: 150 (1962).PubMedGoogle Scholar
  39. 38.
    Bernstein, M. H., and D. Mazia, The deoxyribonucleoprotein of sea urchin sperm. II. Properties, Biochim. Biophys. Acta 11: 59 (1953).PubMedCrossRefGoogle Scholar
  40. 39.
    Billing, R. J., A. M. Inglis, and R. M. S. Smellie, The distribution of deoxyribonucleic acid-like ribonucleic acid in rat liver cells, Biochem. J. 113: 571 (1969).PubMedGoogle Scholar
  41. 40.
    Bimstiel, M., J. Speirs, I. Purdom, K. Jones, and U. E. Loening, Properties and composition of the isolated ribosomal DNA satellite of Xenopus laevis, Nature 219: 454 (1968).CrossRefGoogle Scholar
  42. 40a.
    Bishop, J. O., R. Pemberton, and C. Baglioni, Reiteration frequency of haemoglobin genes, Nature New Biol. 235: 231 (1972).PubMedGoogle Scholar
  43. 41.
    Bloom, D., The syndrome of congenital telangiectatic erythrema and stunted growth, J. Peds. 68: 103 (1966).CrossRefGoogle Scholar
  44. 42.
    Bock, K. W., V. Gang, H. P. Beer, R. Kronau, and H. Grunicke, Localization and regulation of two NAD nucleosidases in Ehrlich ascites cells, European J. Biochem. 4: 357 (1968).CrossRefGoogle Scholar
  45. 43.
    Bonner, J., M. E. Dahmus, D. Frambrough, R. C. Huang, K. Marushige, and D. Y. H. Tuan, The biology of isolated chromatin, Science 159: 57 (1968).CrossRefGoogle Scholar
  46. 44.
    Bonner, J., and P. Ts’o, “The Nucleohistones,” Holden-Day, Inc., San Francisco (1964).Google Scholar
  47. 45.
    Bonner, J., and J. Widholm, Molecular complementarity between nuclear DNA and organ-specific chromosomal RNA, Proc. Nat. Acad. Sci. 57: 1379 (1967).PubMedCrossRefGoogle Scholar
  48. 46.
    Boothroyd, E. R., The reaction of Trillium pollentube chromosomes to cold treatment during mitosis, J. Heredity 44: 3 (1953).Google Scholar
  49. 47.
    Boothroyd, E. R., and A. Lima-de-Faria, DNA synthesis and differential reactivity in the chromosomes of Trillium at low temperatures, Hereditas 52: 122 (1964).Google Scholar
  50. 48.
    Bostock, C. J., Repetitious DNA, in “Advances in Cell Biology” (D. M. Prescott, L. Goldstein, and E. McConkey, eds.) Appleton-Century-Crofts, New York 2: 153 (1971).Google Scholar
  51. 49.
    Bostock, C. J., and D. M. Prescott, Buoyant density of DNA synthesized at different stages of the S phase of mouse L-cells, Exp. Cell Res. 64: 267 (1971).PubMedCrossRefGoogle Scholar
  52. 50.
    Bostock, C. J., and D. M. Prescott, Buoyant density of DNA synthesized at different stages of S phase in Chinese hamster cells, Exp. Cell Res. 64: 481 (1971).PubMedCrossRefGoogle Scholar
  53. 50a.
    Bostock, C. J., and D. M. Prescott, Shift in buoyant density of DNA during the synthetic period and its relation to euchromatin and heterochromatin in mammalian cells, J. Mol. Biol. 60: 151 (1971).PubMedCrossRefGoogle Scholar
  54. 51.
    Boublik, M., E. M. Bradbury, C. Crane-Robinson, and H. W. E. Rattle, Proton magnetic resonance studies of the interactions of histones Fl and F2B with DNA, Nature New Biol. 229: 149 (1971).PubMedGoogle Scholar
  55. 52.
    Bourgeois, S., and A. Jobe, Superrepressors of the lac operon, in “The Lactose Operon” (J. R. Beckwith and D. Zipser, eds.), p. 325, Cold Spring Harbor Laboratory (1970).Google Scholar
  56. 53.
    Bradbury, E. M., Conformations of nucleohistones and histones, Biochem. J. 114: 49P (1969).PubMedGoogle Scholar
  57. 54.
    Bradbury, E. M., C. Crane-Robinson, H. Goldman, H. W. E. Rattle, and R. M. Stephens, Spectroscopic studies of the confirmations of histones and protamine, J. Mol. Biol. 29: 507 (1967).CrossRefGoogle Scholar
  58. 55.
    Bram, S., A study of the structure of nucleohistone and DNA, Ph. D. thesis, University of Wisconsin (1968).Google Scholar
  59. 56.
    Bram, S., and H. Ris, On the structure of nucleohistone, J. Mol. Biol. 55: 325 (1971).PubMedCrossRefGoogle Scholar
  60. 57.
    Bramwell, M. E., Intranuclear accumulation of RNA resembling the smaller ribosomal RNA component, J. Cell Sci. 6: 53 (1970).PubMedGoogle Scholar
  61. 58.
    Brasch, K., V. L. Seligy, and G. Setterfield, Effects of low salt concentration on structural organization and template activity of chromatin in chicken erythrocyte nuclei, Exp. Cell Res. 65: 61 (1971).PubMedCrossRefGoogle Scholar
  62. 60.
    Breuer, M. E., and C. Pavan, Behaviour of polytene chromosomes of Rhynchosciara angelae at different stages of larval development, Chromosoma 7: 371 (1955).CrossRefGoogle Scholar
  63. 61.
    Brewen, J. G., and W. J. Peacock, Restricted rejoining of chromosomal subunits in aberration formation: A test for subunit dissimilarity, Proc. Nat. Acad. Sci. 62: 389 (1969).PubMedCrossRefGoogle Scholar
  64. 62.
    Bridges, C. B., Non-disjunction as proof of the chromosome theory of heredity, Genetics 1: 107 (1916).PubMedGoogle Scholar
  65. 63.
    Bridges, C. B., Salivary chromosome maps, J. Heredity 26: 60 (1935).Google Scholar
  66. 64.
    Bridges, C. B., The bar “gene” a duplication, Science 83: 210 (1936).PubMedCrossRefGoogle Scholar
  67. 65.
    Britten, R. J., and Davidson, E. H., Gene regulation for higher cells: A theory, Science 165: 349 (1969).PubMedCrossRefGoogle Scholar
  68. 66.
    Britten, R. J., and D. E. Kohne, Repeated sequences in DNA, Science 161: 529 (1968).PubMedCrossRefGoogle Scholar
  69. 67.
    Britten, R. J., and D. E. Kohne, Repeated segments of DNA, Sci. Amer. 222: 24 (1970).PubMedCrossRefGoogle Scholar
  70. 68.
    Britten, R. J., and J. Smith, A bovine genome, Carnegie Inst. Wash. Year Book 68: 378 (1969).Google Scholar
  71. 70.
    Brogger, A., Electron microscopy of mitomycin-induced chromatin gaps, Exp. Cell Res. 67: 243 (1971).Google Scholar
  72. 71.
    Brossard, M., and L. Nicole, Metabolism of high molecular weight, polydisperse, rapidly labeled nuclear RNA in rat liver, Canad. J. Biochem. 46: 1497 (1968).CrossRefGoogle Scholar
  73. 72.
    Brosseau, G. E., Evidence that heterochromatin does not suppress V-type position effect, Genetics 54: 237 (1964).Google Scholar
  74. 73.
    Brown, D. D., and I. B. Dawid, Specific gene amplification in oocytes, Science 160: 272 (1968).PubMedCrossRefGoogle Scholar
  75. 74.
    Brown, I. R., and R. B. Church, RNA transcription from non-repetitive DNA in the mouse, Biochem. Biophys. Res. Commun. 42: 850 (1971).PubMedCrossRefGoogle Scholar
  76. 75.
    Brown, R. C., W. L. K. Castle, W. H. Huffines, and J. B. Graham, Pattern of DNA replication in chromosomes of the dog, Cytogenetics 5: 206 (1966).PubMedCrossRefGoogle Scholar
  77. 76.
    Brown, S. W., Heterochromatin, Science 151: 417 (1966).PubMedCrossRefGoogle Scholar
  78. 77.
    Brown, S. W., Developmental control of heterochromatinization in coccids, Genetics 61: Suppl. 1, 191 (1969).Google Scholar
  79. 78.
    Brown, S. W., and U. Nur, Heterochromatic chromosomes in the coccids, Science 145: 130 (1964).PubMedCrossRefGoogle Scholar
  80. 79.
    Buongiorno-Nardelli, M., and F. Amaldi, Autoradiographic detection of molecular hybrids between rRNA and DNA in tissue sections, Nature 225: 946 (1970).PubMedCrossRefGoogle Scholar
  81. 80.
    Burdick, C. J., and M. Himes, Nuclear proteins of hepatocyte and erythrocyte nuclei of frog liver, Nature 221: 1150 (1969).PubMedCrossRefGoogle Scholar
  82. 81.
    Burgess, R. R., Separation and characterization of the subunits of ribonucleic acid polymerase, J. Biol. Chem. 244: 6168 (1968).Google Scholar
  83. 82.
    Burgess, R. R., A. A. Travers, J. J. Dunn, and E. K. F. Bautz, Factor stimulating transcription by RNA polymerase, Nature 221: 43 (1969).PubMedCrossRefGoogle Scholar
  84. 83.
    Burkholder, G. D., T. A. Okada, and D. E. Comings, Whole mount electron microscopy of metaphase. I. Chromosomes and microtubules from mouse oocytes, submitted for publication.Google Scholar
  85. 84.
    Burkholder, G. D., and B. B. Mukherjee, Replication of chromosomal fibers from isolated metaphase chromosomes, Exp. Cell Res. 64: 470 (1971).PubMedCrossRefGoogle Scholar
  86. 84a.
    Burton, K., Harden Conference Scans Cell Nucleus, Nature New Biol. 233: 127 (1971).Google Scholar
  87. 85.
    Busch, H., “Histones and other Nuclear Proteins,” Academic Press, New York (1965).Google Scholar
  88. 86.
    Busch, H., and W. J. Steele, Nuclear proteins in neoplastic cells, Adv. Canc. Res. 8: 41 (1964).CrossRefGoogle Scholar
  89. 87.
    Busch, H, W. J. Steele, L. S. Hnilica, C. W. Taylor, and H. Mavioglu, Biochemistry of histones and the cell cycle, J. Cellul. Comp. Physiol. Suppl. 1, 62: 95 (1963).CrossRefGoogle Scholar
  90. 88.
    Bustin, M., and R. D. Cole, Species and organ specificity in very lysine-rich histones, J. Biol. Chem. 243: 4500 (1968).PubMedGoogle Scholar
  91. 89.
    Bustin, M., and R. A. Cole, A study of the multiplicity of lysine-rich histones, J. Biol. Chem. 244: 5286 (1969).PubMedGoogle Scholar
  92. 90.
    Bustin, M., S. C. Rall, R. H. Stellwagen, and R. D. Cole, Histone structure: Asymmetric distribution of lysine residues in lysine-rich histone, Science 163: 391 (1969).PubMedCrossRefGoogle Scholar
  93. 91.
    Bustos-Valdes, S. E., A. Deisseroth, and A. L. Dounce, Metabolic studies of histones and residual protein of rat liver nuclei, Arch. Biochem. Biophys. 126: 848 (1968).PubMedCrossRefGoogle Scholar
  94. 92.
    Cairns, J., Autoradiography of HeLa cell DNA, J. Mol. Biol. 15: 372 (1966).PubMedCrossRefGoogle Scholar
  95. 93.
    Callan, H. G., The organization of genetic units in chromosomes, J. Cell Sci. 2: 1 (1967).PubMedGoogle Scholar
  96. 94.
    Callan, H. G., and L. Lloyd, Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti), Phil. Trans. Roy. Soc. (London), Ser. B. 243: 135 (1960).CrossRefGoogle Scholar
  97. 95.
    Cameron, I. L., and D. M. Prescott, RNA and protein metabolism in the maturation of the nucleated chicken erythrocyte, Exp. Cell Res. 30: 609 (1963).PubMedCrossRefGoogle Scholar
  98. 96.
    Cantor, K. P., and J. E. Hearst, The structure of metaphase chromosomes, I. Electrometric titration, magnesium ion binding and circular dichorism, J. Mol. Biol. 49: 213 (1969).CrossRefGoogle Scholar
  99. 97.
    Cashel, M., Inhibition of RNA polymerase by ppGpp, a nucleotide accumulated during the stringent response to amino acid starvation in E. coli, Cold Spr. Harb. Symp. Quant. Biol. 35: 407 (1970).CrossRefGoogle Scholar
  100. 98.
    Cashel, M., and J. Gallant, The control of RNA synthesis in Escherichia coli. I. Amino acid dependence of the synthesis of the substrates of RNA polymerase, J. Mol. Biol. 34: 317 (1968).PubMedCrossRefGoogle Scholar
  101. 99.
    Cashel, M., and B. Kalbacher, The control of RNA synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response, J. Biol. Chem. 245: 2309 (1970).PubMedGoogle Scholar
  102. 100.
    Caspersson, T., G. Lomakka, and A. Moller, Computerized chromosome identification by aid of the quinicrine mustard fluorescence technique, Hereditas 67: 103 (1971).CrossRefGoogle Scholar
  103. 101.
    Caspersson, T., S. Farber, G. E. Foley, J. Kudynowski, E. F., Modest, E. Simonsson, U. Wagh, and L. Zech, Chemical differentiation along metaphase chromosomes, Exp. Cell Res. 49: 219 (1968).PubMedCrossRefGoogle Scholar
  104. 102.
    Caspersson, T., L. Zech, E. J. Modest, G. E. Foley, U. Wagh, and E. Simonsson, Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes, Exp. Cell Res. 58: 128 (1969).PubMedCrossRefGoogle Scholar
  105. 103.
    Caspersson, T., Personal communication (1970).Google Scholar
  106. 104.
    Caspersson, T., G. Lomakka, and L. Zech, The 24 fluorescence patterns of the human metaphase chromosomes - distinguishing characters and variability, Hereditas 67: 89 (1971).CrossRefGoogle Scholar
  107. 105.
    Cattanach, B. M., A chemically-induced variegated type position effect in the mouse, Zeit. f Verebungs. 92: 165 (1961).Google Scholar
  108. 106.
    Cattanach, B. M., Controlling elements in the mouse X-chromosome. III. Influence upon both parts of an X divided by rearrangement, Genet. Res. (Camb.) 16: 293 (1970).CrossRefGoogle Scholar
  109. 107.
    Cattanach, B. M., and J. H. Isaacson, Controlling elements in the mouse X-chromosome, Genetics 57: 331 (1967).PubMedGoogle Scholar
  110. 108.
    Cattanach, B. M., and J. H. Isaacson, Genetic control over the inactivation of autosomal genes attached to the X-chromosome, Zeit. f Verebungs. 96: 313 (1965).Google Scholar
  111. 109.
    Cavalieri, L. F., and E. Carroll, A DNA-acrylamide gel column for analyzing proteins that bind to DNA. I. DNA polymerase, Proc. Nat. Acad. Sci. 67: 807 (1970).PubMedCrossRefGoogle Scholar
  112. 110.
    Cave, M. D., Chromosome replication and synthesis of non-histone synthesis of non-histone proteins in giant polytene chromosomes, Chromosoma 25: 392 (1968).PubMedCrossRefGoogle Scholar
  113. 111.
    Chamberlin, M., Transcription 1970: A summary, Cold Spr. Harb. Symp. Quant. Biol. 35: 851 (1970).CrossRefGoogle Scholar
  114. 112.
    Chamberlin, M., J. McGrath, and L. Waskell, New RNA polymerase from Escherichia coli infected with Bacteriophage T7, Nature 228: 227 (1970).PubMedCrossRefGoogle Scholar
  115. 113.
    Chen, T. R., and F. H. Ruddle, Karyotype analysis utilizing differentially stained constitutive heterochromatin of human murine chromosomes, Chromosoma 34: 51 (1971).Google Scholar
  116. 114.
    Chiang, K.-S., and N. Sueoka, Replication of chromosomal and cytoplasmic DNA during mitosis and meiosis in the eukaryote Chlamydomonas reinhardi, J. Cell Physiol. Suppl. 1, 70: 89 (1967).Google Scholar
  117. 115.
    Chipperfield, A. R., Effects of RNA and acidic protein on the interaction between DNA and histones, Life Sci. 6: 2643 (1970).CrossRefGoogle Scholar
  118. 116.
    Church, R. B., Personal communication.Google Scholar
  119. 117.
    Church, R. B., and B. J. McCarthy, Changes in nuclear and cytoplasmic RNA in regenerating liver, Proc. Nat. Acad. Sci. U.S. 58: 1548 (1967).CrossRefGoogle Scholar
  120. 118.
    Church, R. B., S. W. Luther, and B. J. McCarthy, RNA synthesis in Taper hepatoma and mouse-liver cells, Biochim. Biophys. Acta 190: 30 (1969).CrossRefGoogle Scholar
  121. 119.
    Church, R. S., and B. J. McCarthy, Unstable RNA synthesis following estrogen stimulation, Biochim. Biophys. Acta 199: 103 (1970).PubMedCrossRefGoogle Scholar
  122. 120.
    Clark, R. J., and G. Felsenfeld, Structure of chromatin, Nature New Biol. 229: 101 (1971).PubMedGoogle Scholar
  123. 121.
    Clarke, P. R., and P. B. Byvoet, Inhibition of RNA synthesis by acetylation and unacetylated histones, Fed. Proc. 28: 843 (1969).Google Scholar
  124. 122.
    Clarke, J. A., G. F. Rowland, and A. J. Salsbury, The surface and internal structure of metaphase chromatin, Chromosoma 29: 74 (1970).PubMedCrossRefGoogle Scholar
  125. 123.
    Clever, U., and E. G. Ellgaard, Puffing and histone acetylation in polytene chromosomes, Science 169: 373 (1970).PubMedCrossRefGoogle Scholar
  126. 124.
    Cohen, P., and C. Kidson, Conformational analysis of DNA-poly-1-lysine complexes by optical rotary dispersion, J. Mol. Biol. 35: 241 (1968).Google Scholar
  127. 125.
    Comings, D. E., The inactive X chromosome, Lancet 2: 1137 (1966).Google Scholar
  128. 126.
    Comings, D. E., Histones of genetically active and inactive chromatin, J. Cell Biol. 35: 699 (1967).PubMedCrossRefGoogle Scholar
  129. 126a.
    Comings, D. E., 3H-Uridine autoradiography of human chromosomes, Cytogenetics 5: 247 (1966).PubMedCrossRefGoogle Scholar
  130. 127.
    Comings, D. E., The duration of replication of the inactive X chromosome in humans based on the persistence of the heterochromatic sex chromatin body during DNA synthesis, Cytogenetics 6: 20 (1967).PubMedCrossRefGoogle Scholar
  131. 128.
    Comings, D. E., Sex chromatin, nuclear size and the cell cycle, Cytogenetics 6: 120 (1967).PubMedCrossRefGoogle Scholar
  132. 129.
    Comings, D. E., The rationale for an ordered arrangement of chromatin in the interphase nucleus, Am. J. Human Genet. 20: 440 (1968).Google Scholar
  133. 130.
    Comings, D. E., Quantitative autoradiography of heterochromatin replication in Microtus agrestis, Chromosoma 29: 434 (1970).PubMedGoogle Scholar
  134. 131.
    Comings, D. E., Half-chromatid aberrations and chromosome strandedness, Canad. J. Genet. Cytol. 12: 960 (1970).PubMedGoogle Scholar
  135. 132.
    Comings, D. E., Heterochromatin of the Indian Muntjac: Replication, condensation, DNA ultracentrifugation, fluorescent and heterochromatin staining, Exp. Cell Res. 67: 441 (1971).PubMedCrossRefGoogle Scholar
  136. 133.
    Comings, D. E., Heavy shoulder DNA, Exp. Cell Res. 70: 259 (1972).PubMedCrossRefGoogle Scholar
  137. 134.
    Comings, D. E., The replicative heterogeneity of mammalian DNA, Exp. Cell Res. 71: 106 (1972).PubMedCrossRefGoogle Scholar
  138. 135.
    Comings, D. E., Isolabeling and chromosome strandedness, Nature New Biol. 229: 24 (1971).PubMedGoogle Scholar
  139. 136.
    Comings, D. E., Some implications of junk DNA (submitted).Google Scholar
  140. 137.
    Comings, D. E., The base composition and methylation of euchromatic and hetero-chromatic DNA. Abst. 11th Ann. Meeting Amer. Soc. Cell Biol. New Orleans, 1971, p. 62.Google Scholar
  141. 138.
    Comings, D. E., and R. O. Berger, Gene products of Amphiuma: An amphibian with an excessive amount of DNA, Biochem. Genet. 2: 319 (1969).PubMedCrossRefGoogle Scholar
  142. 139.
    Comings, D. E., and T. Kakefuda, Initiation of deoxyribonucleic acid replication at the nuclear membrane in human cells, J. Mol. Biol. 33: 225 (1968).PubMedCrossRefGoogle Scholar
  143. 140.
    Comings, D. E., and E. Mattoccia, Studies of microchromosomes and a GC-rich DNA satellite in the quail, Chromosoma 30: 202 (1970).PubMedGoogle Scholar
  144. 141.
    Comings, D. E., and E. Mattoccia, Replication of repetitious DNA and the S period, Proc. Nat. Acad. Sci. U.S. 67: 448 (1970).CrossRefGoogle Scholar
  145. 142.
    Comings, D. E., and E. Mattoccia, Evidence that heavy shoulder DNA may be localized to the microchrome of birds, Exp. Cell Res. 70: 256 (1972).PubMedCrossRefGoogle Scholar
  146. 143.
    Comings, D. E., and E. Mattoccia, DNA of mammalian and avian heterochromatin, Exp. Cell Res. 71: 113 (1972).PubMedCrossRefGoogle Scholar
  147. 144.
    Comings, D. E., and T. A. Okada, The association of nuclear membrane fragments with metaphase and anaphase chromosomes as observed by whole mount electron microscopy, Exp. Cell Res. 63: 62 (1970).PubMedCrossRefGoogle Scholar
  148. 145.
    Comings, D. E., and T. A. Okada, The association of chromatin fibers with the annuli of the nuclear membrane, Exp. Cell Res. 62: 293 (1970).PubMedCrossRefGoogle Scholar
  149. 146.
    Comings, D. E., and T. A. Okada, The condensation of prophase chromosomes onto the nuclear membrane, Exp. Cell Res. 63: 471 (1970).PubMedCrossRefGoogle Scholar
  150. 147.
    Comings, D. E., and T. A. Okada, Whole mount electron microscopy of meiotic chromosomes and the synaptonemal complex, Chromosoma 30: 269 (1970).PubMedCrossRefGoogle Scholar
  151. 148.
    Comings, D. E., and T. A. Okada, Mechanism of chromosome pairing during meiosis, Nature 227: 451 (1970).PubMedCrossRefGoogle Scholar
  152. 149.
    Comings, D. E., and T. A. Okada, Whole mount electron microscopy of the centro-mere region of metacentric and telocentric mammalian chromosomes, Cytogenetics 9: 436 (1970).PubMedCrossRefGoogle Scholar
  153. 150.
    Comings, D. E., and T. A. Okada, Do half-chromatids exist?, Cytogenetics 9: 450 (1970).PubMedCrossRefGoogle Scholar
  154. 151.
    Comings, D. E., and T. A. Okada, Fine structure of the synaptonemal complex-regular and stereo-electron microscopy of deoxyribonuclease-treated whole mount preparations, Exp. Cell Res. 65: 104 (1971).PubMedCrossRefGoogle Scholar
  155. 152.
    Comings, D. E., and T. A. Okada, Electron microscopy of chromosomes, in “Perspectives in Cytogenetics,” Charles Thomas, Springfield, Ill. (in press) (1972).Google Scholar
  156. 153.
    Comings, D. E., and T. A. Okada, Unpublished observations.Google Scholar
  157. 154.
    Comings, D. E., and T. A. Okada, Fine structure of the kinetochore of Indian Muntjac, Exp. Cell Res. 67: 97 (1971).PubMedCrossRefGoogle Scholar
  158. 155.
    Comings, D. E., and T. A. Okada, Architecture of meiotic cells and mechanisms of chromosome pairing, in “Advances in Cell and Molecular Biology” (E. J. DuPraw, ed.), Academic Press, New York 2: (in press) (1972).Google Scholar
  159. 156.
    Comings, D. E., and A. D. Riggs, Molecular mechanisms of chromosome pairing, folding and function, Nature New Biol. 233: 48 (1971).CrossRefGoogle Scholar
  160. 157.
    Comings, D. E., and L. Tack, Non-histone proteins of metaphase and interphase cells, heterochromatin and euchromatin, (in preparation).Google Scholar
  161. 158.
    Commerford, S. L., and N. Delihas, Examination of the nucleohistone from mouse liver and intestine for RNA covalently linked to histone, Proc. Nat. Acad. Sci. U.S. 56: 1759 (1966).CrossRefGoogle Scholar
  162. 159.
    Corneo, G., E. Ginelli, and E. Polli, A satellite DNA isolated from human tissues, J. Mol. Biol. 23: 619 (1967).PubMedCrossRefGoogle Scholar
  163. 160.
    Corneo, G., E. Ginelli, and E. Polli, Isolation of the complementary strands of a human satellite DNA, J. Mol. Biol. 33: 331 (1968).PubMedCrossRefGoogle Scholar
  164. 161.
    Corneo, G., E. Ginelli, C. Soave, and G. Bernardi, Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids, Biochemistry 7: 4373 (1968).PubMedCrossRefGoogle Scholar
  165. 162.
    Corneo, G., E. Ginelli, and E. Polli, Different satellite deoxyribonucleic acids of guinea pig and ox, Biochemistry 9: 1565 (1970).PubMedCrossRefGoogle Scholar
  166. 163.
    Corneo, G., E. Ginelli, and E. Polli, Repeated sequences in human DNA, J. Mol. Biol. 48: 319 (1970).PubMedCrossRefGoogle Scholar
  167. 164.
    Costello, D. P., Identical linear order of chromosomes in both gametes of the Acoel turbellarian Polychoerus carmelensis: A preliminary note, Proc. Nat. Acad. Sci. U.S. 67: 1951 (1970).Google Scholar
  168. 165.
    Crippa, M., and G. P. Tocchini-Valentini, Performance of a bacterial RNA polymerase factor in an amphibian oocyte, Nature 226: 1243 (1970).PubMedCrossRefGoogle Scholar
  169. 166.
    Crouch, R. J., B. D. Hall, and G. Hager, Control of gene transcription in T-even bacteriophages: Alterations in RNA polymerase accompanying phage infection, Nature 223: 476 (1969).PubMedCrossRefGoogle Scholar
  170. 167.
    Dahmus, M. E., and J. Bonner, Nucleoproteins in regulation of gene function, Fed. Proc. 29: 1255 (1970).PubMedGoogle Scholar
  171. 168.
    Dahmus, M. E., and D. J. McConnell, Chromosomal ribonucleic acid of rat ascites cells, Biochemistry 8: 1524 (1969).PubMedCrossRefGoogle Scholar
  172. 169.
    Daneholt, B., J.-E. Edstrom, E. Egyhazi, B. Lambert, and U. Ringborg, RNA synthesis in a Balbiani ring in Chironomus tentans, Cold Spr. Harb. Symp. Quant. Biol. 35: 513 (1970).Google Scholar
  173. 170.
    Darlington, C. D., and L. LaCour, Nucleic acid starvation of chromosomes in Trillium, J. Genet. 40: 185 (1940).CrossRefGoogle Scholar
  174. 171.
    Darlington, C. D., and L. F. LaCour, The detection of inert genes, J. Heredity 32: 115 (1941).Google Scholar
  175. 172.
    Darlix, J. L., A. Sentenac, and P. Fromageot, Binding of termination factor Rho to RNA polymerase and DNA, Febs Ltrs. 13: 165 (1971).CrossRefGoogle Scholar
  176. 173.
    Darnell, J. E., Ribonucleic acids from animal cells, Bact. Rev. 32: 262 (1968).PubMedGoogle Scholar
  177. 174.
    Darnell, J. E., and R. Balint, The distribution of rapidly hybridizing RNA sequences in heterogeneous nuclear RNA and mRNA from HeLa cells, J. Cell Physiol. 76: 349 (1970)PubMedCrossRefGoogle Scholar
  178. 175.
    Darnell, J. E., G. N. Pagoulatos, U. Lindberg, and R. Balint, Studies on the relationship of mRNA to heterogeneous nuclear RNA in mammalian cells, Cold Spr. Harb. Symp. Quant. Biol. 35: 555 (1970).CrossRefGoogle Scholar
  179. 176.
    Darnell, J. E., R. Wall, and R. J. Tushinski, An adenylic acid-rich sequence in messenger RNA of HeLa cells and its possible relationship to reiterated sites in DNA, Proc. Nat. Acad. Sci. U.S. 68: 1321 (1971).CrossRefGoogle Scholar
  180. 177.
    Davidson, E. H., “Gene Activity in Early Development,” Academic Press, New York (1968).Google Scholar
  181. 178.
    Davidson, E. H., and B. R. Hough, High sequence diversity in the RNA synthesized at the lampbrush stage of oogenesis, Proc. Nat. Acad. Sci. U.S. 63: 342 (1969).CrossRefGoogle Scholar
  182. 179.
    Davidson, E. H., and B. R. Hough, Genetic information in oocyte RNA, J. Mol. Biol. 56: 491 (1971).PubMedCrossRefGoogle Scholar
  183. 180.
    Davies, H. G., Fine structure of heterochromatin in certain cell nuclei, Nature 214: 208 (1967).PubMedCrossRefGoogle Scholar
  184. 181.
    Davies, H. G., Electron-microscope observations on the organization of hetero-chromatin in certain cells, J. Cell Sci. 3: 129 (1968).PubMedGoogle Scholar
  185. 182.
    Dawid, I. B., Deoxyribonucleic acid in amphibian eggs, J. Mol. Biol. 12: 581 (1965).Google Scholar
  186. 183.
    De, D. N., Autoradiographic studies of nucleoprotein metabolism during the division cycle, The Nucleus 4: 1 (1961).Google Scholar
  187. 184.
    Deaven, L. L., and E. Stubblefield, Segregation of chromosomal DNA in Chinese hamster fibroblasts in vitro, Exp. Cell Res. 55: 132 (1969).PubMedCrossRefGoogle Scholar
  188. 185.
    deCrombrugghe, B., B. Chen, W. Anderson, P. Nissley, M. Gottesman, and I. Pastan, Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription, Nature New Biol. 231: 139 (1971).Google Scholar
  189. 186.
    DeFilippes, F. M., Simple purification of HeLa chromatin associated RNA, Biochim. Biophys. Acta 199: 562 (1970).PubMedCrossRefGoogle Scholar
  190. 187.
    Deisseroth, A., Effect of puromycin and cortisol pretreatment on the uptake of (“C) leucine into the globulins, whole histones and residual protein of the rat-liver nucleus, Biochim. Biophys. Acta 186: 392 (1969).CrossRefGoogle Scholar
  191. 188.
    DeLange, R. J., D. M. Frambrough, E. L. Smith, and J. Bonner, Calf and pea histone IV, J. Biol. Chem. 244: 5669 (1969).PubMedGoogle Scholar
  192. 189.
    DeLange, R. J., and E. L. Smith, Histones: structure and function, Ann. Rev. Biochem. 40: 279 (1971).PubMedCrossRefGoogle Scholar
  193. 190.
    DeLange, R. J., E. L. Smith, and J. Bonner, Calf thymus histone III: Sequence of the amino-and carboxyl-terminal regions containing lysyl residues modified by acetylation and methylation, Biochem. Biophys. Res. Commun. 40: 989 (1970).PubMedCrossRefGoogle Scholar
  194. 191.
    De Lucia, P., and J. Cairns, Isolation of an E. coli strain with a mutation affecting DNA polymerase, Nature 224: 1164 (1969).PubMedCrossRefGoogle Scholar
  195. 192.
    Deneus, N. R. T., Preparations for electron microscopy of residual chromosomes, Science 113: 203 (1951).CrossRefGoogle Scholar
  196. 193.
    Dewey, W. C., and H. H. Miller, Effects of cyclohemimide on X-ray induction of chromatid exchanges in synchronous Chinese hamster cells, Exp. Cell Res. 66: 283 (1971).PubMedCrossRefGoogle Scholar
  197. 194.
    Dickson, E., J. B. Boyd, and C. D. Laird, Sequence diversity of polytene chromosome DNA from Drosophila hydei, J. Mol. Biol. 61: 615 (1971).PubMedCrossRefGoogle Scholar
  198. 195.
    Dofuku, R., U. Tettenborn, and S. Ohno, Testosterone-“Regulon” in the mouse kidney, Nature New Biol. 232: 5 (1971).PubMedGoogle Scholar
  199. 196.
    Dokas, L. A., and L. J. Kleinsmith, Adenosine 3’, 5’-monophosphate increases capacity for RNA synthesis in rat-liver nuclei, Science 172: 1237 (1971).PubMedCrossRefGoogle Scholar
  200. 197.
    Dolbeare, F., and H. Koenig, Isolation and characterization of diffuse chromatin from rat liver nuclei, J. Cell Biol. 39: 35a (1968).Google Scholar
  201. 198.
    Dounce, A. L., and C. A. Hilgartner, A study of DNA nucleoprotein gels and the residual protein of isolated cell nuclei, Exp. Cell Res. 36: 228 (1964).PubMedCrossRefGoogle Scholar
  202. 199.
    Drets, M. E., and M. W. Shaw, Specific banding patterns of human chromosomes, Proc. Nat. Acad. Sci. U.S. 68: 2073 (1971).CrossRefGoogle Scholar
  203. 200.
    Drews, J., G. Brawerman, and H. P. Morris, Nucleotide sequence homologies in nuclear and cytoplasmic ribonucleic acid from rat liver and hepatomas, European J. Biochem. 3: 284 (1968).CrossRefGoogle Scholar
  204. 201.
    DuPraw, E. J., The organization of nuclei and chromosomes in honeybee embryonic cells, Proc. Nat. Acad. Sci. U.S. 53: 161 (1965).CrossRefGoogle Scholar
  205. 202.
    DuPraw, E. J., Macromolecular organization of nuclei and chromosomes: A folded fibre model based on whole-mount electron microscopy, Nature 206: 338 (1965).CrossRefGoogle Scholar
  206. 203.
    DuPraw, E. J., Evidence for a `folded-fibre’ organization in human chromosomes, Nature 209: 577. (1966).Google Scholar
  207. 204.
    DuPraw, E. J., “Cell and Molecular Biology,” Academic Press, New York (1968).Google Scholar
  208. 205.
    DuPraw, E. J., and Bahr, G. F., The arrangement of DNA in human chromosomes, as investigated by quantitative electron microscopy, Acta Cytologica 13: 188 (1969).PubMedGoogle Scholar
  209. 206.
    DuPraw, E. J., and P. M. M. Rae, Polytene chromosome structure in relation to the “folded fibre” concept, Nature 212: 598 (1966).PubMedCrossRefGoogle Scholar
  210. 207.
    Dutrillaux, B., and J. Lejeune, Sur une nouvelle technique d’analyse du caryotype humain, C. R. Acad. Sci. Paris, Ser. D,272: 2638 (1971).Google Scholar
  211. 208.
    Dutrillaux, B., J. de Grouchy, C. Finaz, and J. Lejeune, Mise en évidence de la structure fine des chromosomes humains par digestion enzymatique (pronase en particulier), C. R. Acad. Sci. Paris, Ser. D,273: 587 (1971).Google Scholar
  212. 209.
    Eberle, P., Cytologische Untersuchungen an Gesneriaceen. II. Die Verkürzung eu-und hetero-chromatische Chromosomenabschnitte vom Pachytän bis zur Metaphase-I, Ber. Deut. Bot. Gesellsch. 70: 323 (1957).Google Scholar
  213. 210.
    Eckhardt, R. A., and J. G. Gall, Satellite DNA associated with heterochromatin in Rhynochosciara, Chromosoma 32: 407 (1971).PubMedCrossRefGoogle Scholar
  214. 211.
    Edelmann, G. M., and J. A. Gally, Arrangement and evolution of eukaryotic genes, in “The Neurosciences, A Second Study Program,” (F. A. Schmitt, ed.), p. 962, The Rockefeller University Press, New York (1970).Google Scholar
  215. 212.
    Editorial: How free is DNA?, Nature New Biol. 229: 97 (1971).Google Scholar
  216. 212a.
    Edmonds, M., and M. G. Caramela, The isolation and characterization of adenosine monophosphate-rich polynucleotides synthesized by Ehrlich ascites cells, J. Biol. Chem. 244: 1314 (1969).PubMedGoogle Scholar
  217. 213.
    Edmonds, M., M. H. Vaughan, Jr., and H. Nakazato, Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: Possible evidence for precursor relationship, Proc. Nat. Acad. Sci. U.S. 68: 1336 (1971).CrossRefGoogle Scholar
  218. 214.
    Edstrom, J. E., and J. G. Gall, The base composition of ribonucleic acid in lamp-brush chromosomes, nucleoli, nuclear sap, and cytoplasm of Triturus oocytes, J. Cell Biol. 19: 279 (1963).CrossRefGoogle Scholar
  219. 215.
    Edstrom, J. E., and B. Daneholt, Sedimentation properties of the newly synthesized RNA from isolated nuclear components of Chirnomus tentans salivary gland cells, J. Mol. Biol. 28: 331 (1967).PubMedCrossRefGoogle Scholar
  220. 216.
    El-Alfi, O. S., A. Derencsenyli, G. N. Donnell, and M. Nicolson, Quinacrine fluorescence of the human mitotic chromosomes: The role of various chromosomal components in,determining the fluorescent pattern, 4th Int. Congr. Human Genetics, Paris (1971), and Excerpta Medical ICS 233: 62 (1971).Google Scholar
  221. 217.
    Elgin, S. C. R., S. C. Froehner, J. E. Smart, and J. Bonner, The biology and chemistry of chromosomal proteins, in “Advances in Cell and Molecular Biology” ( E. J. DuPraw, ed.) Academic Press, New York (1971).Google Scholar
  222. 218.
    Elgin, S. C. R., and J. Bonner, Limited heterogeneity of the major non-histone chromosomal proteins, Biochemistry 9: 4440 (1970).PubMedCrossRefGoogle Scholar
  223. 219.
    Ellem, K. A. O., Some properties of mammalian DNA-like RNA isolated by chromatography on methylated bovine serum albumin-Kieselguhr columns, J. Mol. Biol. 20: 283 (1966).PubMedCrossRefGoogle Scholar
  224. 220.
    Epstein, C. J., Mammalian oocytes: X chromosome activity, Science 163: 1078 (1969).PubMedCrossRefGoogle Scholar
  225. 221.
    Erlandson, R. A., and E. de Harven, Nuclear structure and tritiated thymidine incorporation in synchronized HeLa cells, J. Cell Biol. 47: 58a (1970).Google Scholar
  226. 222.
    Evans, H. J., and J. R. K. Savage, The relation between DNA synthesis and chromosome structure as resolved by X-ray damage, J. Ce!! Biol. 18: 525 (1963).CrossRefGoogle Scholar
  227. 223.
    Fasman, G. D., B. Schaffhausen, L. Goldsmith, and A. Adler, Conformational changes associated with f-1 histone-deoxyribonucleic acid complexes. Circular dichromism studies, Biochemistry 9: 2814 (1970).PubMedCrossRefGoogle Scholar
  228. 224.
    Feughelman, M., R. Langridge, W. E. Seeds, A. R. Stokes, H. R. Wilson, C. W. Hooper, M. H. Wilkins, R. K. Barclay, and L. D. Hamilton, Molecular structure of deoxyribose nucleic acid and nucleoprotein, Nature 175: 834 (1955).PubMedCrossRefGoogle Scholar
  229. 225.
    Fielding, P., and C. F. Fox, Evidence for stable attachment of DNA to membrane at the replication origin of Escherichia coli, Biochem. Biophys. Res. Commun. 41: 157 (1970).CrossRefGoogle Scholar
  230. 226.
    Flamm, W. G., M. McCallum, and P. M. B. Walker, The isolation of complementary strands from a mouse DNA fraction, Proc. Nat. Acad. Sci. U.S. 57: 1729 (1967).CrossRefGoogle Scholar
  231. 227.
    Flamm, W. G., P. M. B. Walker, and M. McCallum, Some properties of the single strands isolated from the DNA of the nuclear satellite of the mouse (Mus muculus), J. Mol. Biol. 40: 423 (1969).PubMedCrossRefGoogle Scholar
  232. 228.
    Flamm, W. G., P. M. B. Walker, and M. McCallum, Renaturation and isolation of single strands from nuclear DNA of the guinea pig, J. Mol. Biol. 42: 441 (1969).PubMedCrossRefGoogle Scholar
  233. 229.
    Flamm, W. G., N. J. Bernheim, and P. E. Brubaker, Density gradient analysis of newly replicated DNA from synchronized mouse lymphoma cells, Exp. Cell Res. 64: 97 (1971).PubMedCrossRefGoogle Scholar
  234. 230.
    Flatz, G., J. L. Kinderlerer, J. V. Kilmartin, and H. Lehmann, Haemoglobin Tak: A variant with additional residues at the end of the ß-chains, Lancet 1: 732 (1971).PubMedCrossRefGoogle Scholar
  235. 231.
    IVth Int. Conference on Standardization in Human Cytogenetics, Paris, Sept. 2–4, 1971, National Foundation-March of Dimes.Google Scholar
  236. 232.
    Fraccaro, M., L. Tiepolo, O. Zuffardi, C. Barigozzi, and S. Dolfini, Fluorescence and Y translocation in XX males, Lancet 1: 858 (1971).PubMedCrossRefGoogle Scholar
  237. 233.
    Frambrough, D. M., and J. Bonner, On the similarity of plant and animal histones, Biochemistry 5: 2563 (1966).CrossRefGoogle Scholar
  238. 234.
    Frambrough, D. M., and Bonner, J., Sequence homology and role of cysteine in plant and animal arginine-rich histones, J. Biol. Chem. 243: 4434 (1968).Google Scholar
  239. 235.
    Frambrough, D. M., and J. Bonner, Limited molecular heterogeneity of plant histones, Biochim. Biophys. Acta 175: 113 (1969).CrossRefGoogle Scholar
  240. 236.
    Freeman, M. V. R., S. M. Beiser, B. F. Erlanger, and O. J. Miller, Reaction of anti-nucleoside antibodies with human cells in vitro, Exp. Cell Res. 69: 345 (1971).PubMedCrossRefGoogle Scholar
  241. 237.
    Freeman, M. V. R., S. M. Beiser, B. F. Erlanger, and O. J. Miller, Reaction of antinucleoside antibodies with human metaphase chromosomes (in preparation).Google Scholar
  242. 238.
    Frenster, J. H., Nuclear polyanions as de-repressors of synthesis of ribonucleic acid, Nature 206: 680 (1965).PubMedCrossRefGoogle Scholar
  243. 239.
    Friedman, D. L., and G. C. Mueller, Studies on the nature of replicating DNA of HeLa cells, Biochim. Biophys. Acta 174: 253 (1969).PubMedCrossRefGoogle Scholar
  244. 240.
    Furlan, M., and M. Jericijo, Protein catabolism in thymus nuclei. I. Hydrolysis of nucleoproteins by proteases present in calf-thymus nuclei, Biochim. Biophys. Acta 147: 135 (1967).PubMedCrossRefGoogle Scholar
  245. 241.
    Furlan, M., and M. Jericijo, Protein catabolism in thymus nuclei. II. Binding of histone-splitting nuclear proteases to deoxyribonucleic acid, Biochim. Biophys. Acta 147: 53 (1967).Google Scholar
  246. 242.
    Furlan, M., M. Jericijo, and A. Suhar, Purification and properties of a neutral protease from calf thymus nuclei, Biochim. Biophys. Acta 167: 154 (1968).PubMedCrossRefGoogle Scholar
  247. 243.
    Gagne, R., R. Tanguay, and C. Laberge, Differential staining patterns of hetero-chromatin in man, Nature New Biology 232: 29 (1971).PubMedGoogle Scholar
  248. 244.
    Gall, J., Chromosome fibers from an interphase nucleus, Science 139: 120 (1963).PubMedCrossRefGoogle Scholar
  249. 245.
    Gall, J. G., Kinetics of deoxyribonuclease action on chromosomes, Nature 198: 37 (1963).CrossRefGoogle Scholar
  250. 246.
    Gall, J. G., Chromosome fiber studies by a spreading technique, Chromosoma 20: 221 (1966).PubMedCrossRefGoogle Scholar
  251. 247.
    Gall, J. G., Differential synthesis on the genes for ribosomal RNA during amphibian oogenesis, Proc. Nat. Acad. Sci. U.S. 60: 553 (1968).CrossRefGoogle Scholar
  252. 248.
    Gall, J. G., The genes for ribosomal RNA during oogenesis, Genetics Suppl. 1, 61: 121 (1969).Google Scholar
  253. 249.
    Gall, J. G., and M. L. Pardue, Formation and detection of RNA-DNA hybrid molecules in cytological preparations, Proc. Nat. Acad. Sci. U.S. 63: 378 (1969).CrossRefGoogle Scholar
  254. 250.
    Gall, J. G., E. H. Cohen, and M. L. Polan, Repetitive DNA sequences in Drosophila, Chromosoma 33: 319 (1971).PubMedCrossRefGoogle Scholar
  255. 251.
    Ganesan, A. T., and J. Lederberg, A cell-membrane bound fraction of bacterial DNA, Biochem. Biophys. Res. Commun. 18: 824 (1965).CrossRefGoogle Scholar
  256. 252.
    Ganner, E., and H. J. Evans, The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement. Chromosoma 35: 326 (1971).PubMedCrossRefGoogle Scholar
  257. 253.
    Gaskill, P., and D. Kabat, Unexpectedly large size of globin messenger ribonucleic acid, Proc. Nat. Acad. Sci. U.S. 68: 72 (1971).Google Scholar
  258. 254.
    Gay, H., C. C. Das, K. Forward, and B. P. Kaufmann, DNA content of mitoticallyactive condensed chromosomes of Drosophila melanogaster, Chromosoma 32: 213 (1970).PubMedGoogle Scholar
  259. 255.
    Geitler, L., Temperaturbedingte Asbildung von Spezialsegmenten an Chromosomenenden, Chromosoma 1: 554 (1940).CrossRefGoogle Scholar
  260. 256.
    Gelderman, A. H., A. V. Rake, and R. J. Britten, Transcription of non-repeated DNA in neonatal and fetal mice, Proc. Nat. Acad. Sci. U.S. 68: 172 (1971).CrossRefGoogle Scholar
  261. 257.
    Georgiev, G. P., The nature and biosynthesis of nuclear ribonucleic acids, Prog. Nucleic Acid Res. 6: 259 (1967).CrossRefGoogle Scholar
  262. 258.
    Georgiev, G. P., On the structural organization and the regulation of RNA synthesis in animal cells, J. Theoret. Biol. 25: 473 (1969).CrossRefGoogle Scholar
  263. 259.
    Georgiev, G. P., L. N. Ananieva, and J. V. Kozlov, Stepwise removal of protein from a deoxyribonucleoprotein complex and de-repression of the genome, J. Mol. Biol. 22: 365 (1966).PubMedCrossRefGoogle Scholar
  264. 260.
    Gershey, E. L., and L. J. Kleinsmith, Phosphoproteins from calfthymus nuclei: Studies on the method of isolation, Biochim. Biophys. Acta 194: 331 (1969).PubMedCrossRefGoogle Scholar
  265. 261.
    Gershey, E. L., G. Vadali, and V. G. Allfrey, Chemical studies of histone acetylation, J. Biol. Chem. 243: 5018 (1968).PubMedGoogle Scholar
  266. 262.
    Giannelli, F., “Human Chromosome DNA Synthesis,” S. Karger, Basel (1970).Google Scholar
  267. 263.
    Giannoni, G., and A. R. Peacocke, Thymus deoxyribonucleoprotein. III. Sedimentation behaviour, Biochim. Biophys. Acta 68: 157 (1963).PubMedCrossRefGoogle Scholar
  268. 264.
    Gilbert, W., and B. Muller-Hill, Isolation of the lac repressor, Proc. Nat. Acad. Sci. U.S. 56: 1891 (1966).CrossRefGoogle Scholar
  269. 265.
    Gilbert, W., and B. Muller-Hill, The lactose repressor, in “The Lactose Operon” (J. R. Beckwith and D. Zipser, eds.), p. 93, The Cold Spring Harbor Laboratory (1970).Google Scholar
  270. 266.
    Gill, G. N., and L. D. Garren, Role of the receptor in the mechanism of action of adenosine 3’, 5’-cyclic monophosphate, Proc. Nat. Acad. Sci. U.S. 68: 786 (1971).CrossRefGoogle Scholar
  271. 267.
    Gilmour, R. S., and J. Paul, RNA transcribed from reconstituted nucleoprotein is similar to natural RNA, J. Mol. Biol. 40: 137 (1969).PubMedCrossRefGoogle Scholar
  272. 268.
    Gilmour, R. S., and J. Paul, Role of nonhistone components in determining organ specificity of rabbit chromatins, FEBS Ltrs. 9: 242 (1970).CrossRefGoogle Scholar
  273. 269.
    Gimenez-Martin, G., J. F. Lopez-Saez, and A. Gonzalez-Fernandes, Somatic chromosome structure (Observations with the light microscope), Cytologia 28: 381 (1963).CrossRefGoogle Scholar
  274. 270.
    Goff, C. G., and K. Weber, A T5-induced RNA polymerase a subunit modification, Cold Spr. Harb. Symp. Quant. Biol. 35: 101 (1970).CrossRefGoogle Scholar
  275. 271.
    Gorovsky, M. A., and R. A. Eckhardt, Studies on the histones of mouse hetero-and euchromatin, J. Cell Biol. 47: 75a (1970).Google Scholar
  276. 272.
    Gowen, J. W., and E. H. Gay, Eversporting as a function of the Y chromosome in Drosophila melanogaster, Proc. Nat. Acad. Sci. U.S. 19: 122 (1933).CrossRefGoogle Scholar
  277. 273.
    Gowen, J. W., and E. H. Gay, Chromosome constitution and behaviour in ever-sporting and mottling in Drosophila, Genetics 19: 189 (1934).PubMedGoogle Scholar
  278. 274.
    Green, M. N., Pseudoallelism at the vermillion locus in Drosophila melanogaster, Proc. Nat. Acad. Sci. U.S. 40: 92 (1954).CrossRefGoogle Scholar
  279. 275.
    Greenaway, P. J., and K. Murray, Heterogeneity and polymorphism in chicken erythrocyte histone fraction V, Nature New Biol. 229: 233 (1971).PubMedCrossRefGoogle Scholar
  280. 276.
    Greensher, A., R. Gersh, D. Peakman, and A. Robinson, Fluorescence of the Y and Barr body in human interphase cells, Lancet 1: 920 (1971).PubMedCrossRefGoogle Scholar
  281. 277.
    Griffith, J., High resolution electron microscopy studies of chromosomal fibers, Ph. D. thesis, Dept. of Biology, California Institute of Technology, Pasadena (1970).Google Scholar
  282. 278.
    Grippo, P., E. Parisi, C. Carestia, and E. Scarano, A novel origin of some deoxyribonucleic acid thymine and its non-random distribution, Biochemistry 9: 2605 (1970).PubMedCrossRefGoogle Scholar
  283. 279.
    Grumbach, M. M., A. Morishima, and J. H. Taylor, Human sex chromosome abnormalities in relation to DNA replication and heterochromatinization, Proc. Nat. Acad. Sci. U.S. 49: 581 (1963).CrossRefGoogle Scholar
  284. 280.
    Gurley, L. R., J. L. Irvin, and D. J. Holbrook, Inhibition of RNA polymerase by istone, Biochem. Biophys. Res. Commun. 14: 527 (1964).PubMedCrossRefGoogle Scholar
  285. 281.
    Hahn, W. E., and C. D. Laird, Transcription of non-repeated DNA in mouse brain, Science 173: 158 (1971).PubMedCrossRefGoogle Scholar
  286. 282.
    Hallick, L., R. P. Boyce, and H. Echols, Membrane association by bacteriophage DNA: Possible direct role of regulator gene N, Nature 223: 1239 (1969).CrossRefGoogle Scholar
  287. 283.
    Hanaoka, F., and M. Yamada, Localization of the replication point of mammalian cell DNA at the membrane, Biochem. Biophys. Res. Commun. 42: 647 (1971).PubMedCrossRefGoogle Scholar
  288. Hannah, A., Localization and function of heterochromatin in Drosophila melanogaster, Adv. in Genet. 4: 87 (1951).Google Scholar
  289. 285.
    Hardin, J. W., T. J. O’Brien, and J. H. Cherry, Stimulation of chromatin-bound RNA polymerase activity by a soluble factor, Biochim. Biophys. Acta 224: 667 (1970).PubMedCrossRefGoogle Scholar
  290. 286.
    Haret, J., N. Hanania, H. Tapiero, and L. Haret, RNA replication by nuclear satellite DNA in different mouse cells, Biochem. Biophys. Res. Commun. 33: 696 (1968).CrossRefGoogle Scholar
  291. 287.
    Harris, H., Turnover of nuclear and cytoplasmic ribonucleic acid in two types of animal cell, with some further observations on the nucleolus, Biochem. J. 73: 362 (1959).PubMedGoogle Scholar
  292. Harris, H., Nuclear ribonucleic acid, Prog. in Nucleic Acid Res. 2: 19 (1963).Google Scholar
  293. 289.
    Harris, H., “Cell Fusion,” Harvard University Press, Cambridge, Mass. (1970).Google Scholar
  294. 290.
    Harris, H., and Watts, J. W., The relationship between nuclear and cytoplasmic ribonucleic acid, Proc. Roy. Soc. Ser. B. London 156: 109 (1962).CrossRefGoogle Scholar
  295. 291.
    Hartmen, G., K. O. Honikel, F. Knusel, and J. Nuesch, The specific inhibition of the DNA-directed RNA synthesis by rifamycin, Biochim. Biophys. Acta 145: 843 (1967).CrossRefGoogle Scholar
  296. 292.
    Hearst, J. E., and M. Botchan, The eukaryotic chromosome, Ann. Rev. Biochem. 39: 151 (1970).PubMedCrossRefGoogle Scholar
  297. 293.
    Hecht, N. B., and H. Stem, A late replicating DNA protein complex from cells in meiotic prophase, Exp. Cell Res. (in press).Google Scholar
  298. 294.
    Heddle, J. A., The strandedness of chromosomes: Evidence from chromosomal aberrations, Canad. J. Genet. Cytol. 11: 783 (1969).PubMedGoogle Scholar
  299. 295.
    Heddle, J. A., and D. J. Bodycote, The strandedness of lampbrush chromosomes, J. Cell Biol. 43: 52a (1969).Google Scholar
  300. 296.
    Heddle, J. A., and D. J. Bodycote, The kinetics of digestion of lampbrush chromosomes by DNase I, J. Cell Biol. 47: 85a (1970).Google Scholar
  301. 297.
    Heilweil, I. J., H. G. Heilweil, and Q. Van Winkle, Electron microscopy of chromosomes in smears, Science 116: 12 (1952).Google Scholar
  302. 298.
    Heitz, E., Das Heterochromatin der Moose I, Jahrb. f Wissensch. Bot. 69: 762 (1928).Google Scholar
  303. 299.
    Heitz, E., Die Ursache der gesetzmassingen Zahl, Lage, Form und Grosse pflanzlicher Nukleolin, Planta 12: 775 (1931).CrossRefGoogle Scholar
  304. 300.
    Heitz, E., Die somatische Heteropyknose bei Drosophila melanogaster und ihre genetische Bedeutung, Z. Zellforsch. 20: 237 (1933).CrossRefGoogle Scholar
  305. 301.
    Heitz, E., Uber a-und ß-Heterochromatin sowie Konstanz und Bau der Chromomeren bei Drosophila, Biologs. Zentral. Leipzig 54: 588 (1934).Google Scholar
  306. a. Heneen, W. K., In situ analysis of cultured Potorous cells. II. Labeling in relation to chromosome orientation during the development of bipolar spindles, Hereditas 67: 251 (1971).Google Scholar
  307. 302.
    Hennig, W., I. Hennig, and H. Stein, Repeated sequences in the DNA of Drosophila and their localization in Giant chromosomes, Chromosoma 32: 31 (1970).PubMedCrossRefGoogle Scholar
  308. 303.
    Hennig, W., and P. M. B. Walker, Variations in the DNA from two rodent families (Cricetidae and Muridae), Nature 225: 915 (1970).PubMedCrossRefGoogle Scholar
  309. 304.
    Herreros, B., and F. Giannelli, Spatial distribution of old and new chromatid subunits and frequency of chromatid exchanges in induced human lymphocyte endoreduplication, Nature 216: 286 (1967).Google Scholar
  310. 305.
    Heyden, H. W. V., and H. G. Zachau, Characterization of RNA in fractions of calf thymus chromatin, Biochim. Biophys. Acta 232: 651 (1971).CrossRefGoogle Scholar
  311. 306.
    Himes, M., An analysis of heterochromatin in maize root tips, J. Cell Biol. 35: 175 (1967).PubMedCrossRefGoogle Scholar
  312. 307.
    Himes, M., C. Burdick, D. Bakewicz, Nonhistone proteins of hematocyte and erythrocyte nuclei of frog liver, J. Cell Biol. 43: 53a (1969).Google Scholar
  313. 308.
    Hindley, J., The relative ability of reconstituted nucleohistones to allow DNA-dependent RNA synthesis, Biochem. Biophys. Res. Commun. 12: 175 (1963).Google Scholar
  314. 309.
    Hinegardner, R., Evolution of cellular DNA content in telost fishes, Amer. Naturalist 102: 517 (1968).Google Scholar
  315. 310.
    Hinkle, D. C., and 141 Chamberlin, The role of sigma subunit in template site selection by E. coli RNA polymerase, Cold Spr. Harb. Symp. Quant. Biol. 35: 65 (1970).CrossRefGoogle Scholar
  316. 311.
    Hnilica, L. S., Studies on nuclear proteins. I. Observations on the tissue and species specificity of the moderately lysine-rich histone fraction 2b, Biochim. Biophys. Acta 117: 163 (1966).PubMedCrossRefGoogle Scholar
  317. 312.
    Hnilica, L. S., and D. Billen, The effect of DNA-histone interactions on the biosynthesis of DNA in vitro, Biochim. Biophys. Acta 91: 271 (1964).PubMedGoogle Scholar
  318. 313.
    Holliday, R., Genetic recombination in fungi, in “Replication and Recombination in Genetic Material” (W. J. Peacock and R. D. Brock, eds.), p. 87, Australian Academy of Science, Canberra (1968).Google Scholar
  319. 314.
    Holliday, R., The organization of DNA in eukaryotic chromosomes, in “Organization and Control in Prokaryotic and Eukaryotic Cells,” p. 359. Cambridge University Press, Cambridge (1970).Google Scholar
  320. 315.
    Holoubek, V., Two biological groups of histones, J. Cell Biol. 31: 49A (1966).Google Scholar
  321. 316.
    Holoubek, V., and T. T. Crocker, DNA-associated acidic proteins, Biochim. Biophys. Acta 157: 352 (1968).PubMedCrossRefGoogle Scholar
  322. 317.
    Holoubek, V., L. Fanshier, T. T. Crocker, and L. S. Hnilica, Simultaneous increase in labeling of nuclear RNA and of DNA associated acidic nuclear proteins. Life Sci. 5: 1691 (1966).PubMedCrossRefGoogle Scholar
  323. 318.
    Holoubek, V., and R. R. Rueckert, Studies on nuclear protein metabolism after infection of Ehrlich ascites cells with Maus-Elberfeld (ME) virus, Biochem. Biophys. Res. Commun. 15: 166 (1964).CrossRefGoogle Scholar
  324. 319.
    Hook, E. B., and N. H. Hatcher, Differential labeling of human chromosomes using 3H-deoxycytidine and 3H-thymidine: A possible new method for autoradiographic chromosome identification, Am. J. Human Genet. 30: 9a (1970).Google Scholar
  325. 320.
    Horgen, P. A., and D. H. Griffin, Specific inhibitors of the three RNA polymerases from the aquatic fungus Blastocladiella emersonii, Proc. Nat. Acad. Sci. U.S. 68: 338 (1971).CrossRefGoogle Scholar
  326. 321.
    Houssais, J. F., and G. Attardi, High molecular weight non-ribosomal-type nuclear RNA and cytoplasmic messenger RNA in HeLa cells, Proc. Nat. Acad. Sci. U.S. 56: 616 (1966).CrossRefGoogle Scholar
  327. 322.
    Howk, R., and T. Y. Wang, DNA polymerase from rat liver chromosomal proteins. I. Partial purification and general chracteristics, Arch. Biochem. Biophys. 133: 238 (1969).PubMedCrossRefGoogle Scholar
  328. 323.
    Hsu, T. C., and F. E. Arrighi, Distribution of constitutive heterochromatin in mammalian chromosomes, Chromosoma 34: 243 (1971).PubMedGoogle Scholar
  329. 324.
    Hsu, T. C., W. C. Dewey, and R. M. Humphrey, Radiosensitivity of cells of Chinese hamster in vitro in relation to the cell cycle, Exp. Cell Res. 27: 441 (1962).PubMedCrossRefGoogle Scholar
  330. 325.
    Huang, R. C., and J. Bonner, Histone, a suppressor of chromosomal RNA synthesis, Proc. Nat. Acad. Sci. U.S. 48: 1216 (1962).CrossRefGoogle Scholar
  331. 326.
    Huang, R. C., J. Bonner, and K. Murray, Physical and biological properties of soluble nucleohistones, J. Mol. Biol. 8: 54 (1964).PubMedCrossRefGoogle Scholar
  332. 327.
    Huang, R. C., and J. Bonner, Histone-bound RNA, a component of native nucleo-histone, Proc. Nat. Acad. Sci. U.S. 54: 960 (1965).CrossRefGoogle Scholar
  333. 328.
    Huang, R. C., and P. C. Huang, Effect of protein-bound RNA associated with chick embryo chromatin on template specificity of the chromatin, J. Mol. Biol. 39: 365 (1969).PubMedCrossRefGoogle Scholar
  334. 329.
    Huang, R. C., H. Ohlenbusch, D. Frambrough, and J. Bonner, cited by K. Murray in The basic proteins of cell nuclei, Ann. Rev. Biochem. 34: 209 (1965).CrossRefGoogle Scholar
  335. 330.
    Huberman, J. A., and G. Attardi, Isolation of metaphase chromosomes from HeLa cells, J. Cell Biol. 31: 95 (1966).PubMedCrossRefGoogle Scholar
  336. 331.
    Huberman, J. A., and G. Attardi, Studies of fractionated HeLa cell metaphase chromosome. I. The chromosomal distribution of DNA complementary to 28S and 18S ribosomal RNA and to cytoplasmic messenger RNA, J. Mol. Biol. 29: 487 (1967).CrossRefGoogle Scholar
  337. 332.
    Huberman, J. A., and A. D. Riggs, On the mechanism of DNA replication in mammalian chromosomes, J. Mol. Biol. 32: 327 (1968).PubMedCrossRefGoogle Scholar
  338. 333.
    Hughes-Schrader, S., The meiotic chromosomes of the male Llaveiella taenechina Morrison (Coccidae) and the question of the tertiary split, The Biol. Bullet. 78: 312 (1940).CrossRefGoogle Scholar
  339. 334.
    Huttunen, J. K., D. Steinberg, and S. E. Mayer, ATP-dependent and cyclic AMP-dependent activation of rat adipose tissue lipase by protein kinase from rabbit skeletal muscle, Proc. Nat. Acad. Sci. U. S. 67: 290 (1970).Google Scholar
  340. 335.
    Ippen, K., J. H. Miller, J. Scaife, and J. Beckwith, New controlling element in the lac operon of E. coli, Nature 217: 825 (1968).PubMedCrossRefGoogle Scholar
  341. 336.
    Itzhaki, R. F., Structure of deoxyribonucleoprotein as revealed by its binding to polylysine, Biochem. Biophys. Res. Commun. 41: 25 (1970).PubMedCrossRefGoogle Scholar
  342. 337.
    Iwai, K., K. Ishikawa, and H. Hayashi, Amino-acid sequence of slightly lysine-rich histone, Nature 226: 1056 (1970).PubMedCrossRefGoogle Scholar
  343. 338.
    Izawa, M., V. G. Allfrey, and A. E. Mirsky, The relationship between RNA synthesis and loop structure in lampbrush chromosomes, Proc. Nat. Acad. Sci. U.S. 49: 544 (1963).CrossRefGoogle Scholar
  344. 339.
    Jackson, V., J. Earnhardt, and R. Chalkley, A DNA-lipid protein containing material from calf thymus nuclear protein, Biochem. Biophys. Res. Commun. 33: 253 (1968).PubMedCrossRefGoogle Scholar
  345. 340.
    Jacob, F., A. Brenner, and F. Cuzin, On the regulation and DNA replication, Cold Spr. Harb. Symp. Quant. Biol. 28: 329 (1963).CrossRefGoogle Scholar
  346. 341.
    Jacob, F., and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3: 318 (1961).PubMedCrossRefGoogle Scholar
  347. 342.
    Jacob, F., A. Ryter, and F. Cuzin, On the association between DNA and membrane in bacteria, Proc. Roy. Soc. London 164: 267 (1966).CrossRefGoogle Scholar
  348. 343.
    Jacob, F., A. Ullman, and J. Monod, Le promoteur, element genetique necessaire a l’expression d’un operon, Compt. Rend. Acad. Sci. Paris 258: 3125 (1964).Google Scholar
  349. 344.
    Jensen, E. V., T. Suzuki, T. Kawashima, W. E. Stumpf, P. W. Jungblut, and E. R. DeSombre, A two-step mechanism for the interaction of estradiol with rat uterus, Proc. Nat. Acad. Sci. U.S. 59: 632 (1968).CrossRefGoogle Scholar
  350. 345.
    Jergil, B., M. Sung, and G. H. Dixon, Species-and tissue-specific patterns of phosphorylation of very lysine-rich histones, J. Biol. Chem. 245: 5867 (1970).Google Scholar
  351. 346.
    Johns, E. W., The histones, their interactions with DNA, and some aspects of gene control, in “CIBA Foundation symposium on hemostatic Regulators,” p. 128, Churchill, London (1969).Google Scholar
  352. 347.
    Johns, E. W., and J. A. V. Butler, Further fractionations of histones from calf thymus, Biochem. J. 82: 15 (1962).PubMedGoogle Scholar
  353. 348.
    Johns, E. W., and T. A. Hoare, Histones and gene control, Nature 226: 650 (1970).PubMedCrossRefGoogle Scholar
  354. 349.
    Jokelainen, P. T., The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells, J. Ultrastruc. Res. 19: 19 (1967).CrossRefGoogle Scholar
  355. 350.
    Jones, K. W., Chromosomal and nuclear location of mouse satellite DNA in individual cells, Nature 225: 912 (1970).PubMedCrossRefGoogle Scholar
  356. 350a.
    Jones, K. W., and G. Corneo, Location of satellite and homogeneous DNA sequences on human chromosomes, Nature New Biol. 233: 268 (1971).PubMedCrossRefGoogle Scholar
  357. 351.
    Jones, K. W., and F. W. Robertson, Localization of reiterated nucleotide sequences in Drosophila and mouse by in situ hybridization of complementary RNA, Chromo-soma 31: 331 (1970).CrossRefGoogle Scholar
  358. 352.
    Jones, K. W., and G. Corneo, Location of satellite and homogeneous DNA sequences on human chromosomes, Nature New Biology 233: 268 (1971).PubMedCrossRefGoogle Scholar
  359. 353.
    Jost, A., Action de la testosterone sur l’embryon male castre de lapin, Compt. Rend. Soc. de Biol. 141: 275 (1947).Google Scholar
  360. 354.
    Jost, A., Sur les derives mulleriens d’embryons de lapin des deux sexes castres a 21 jours, Compt. Rend. Soc. de Biol. 141: 135 (1947).Google Scholar
  361. 355.
    Jost, A., Sur les effects de la castration precoce de l’embryon male de lapin, Compt. Rend. Soc. de Biol. 141: 126 (1947).Google Scholar
  362. 356.
    Judd, B. H., The structure of intralocus duplication and deficiency chromosomes produced by recombination in Drosophila melanogaster, with evidence for polarized pairing, Genetics 49: 253 (1964).PubMedGoogle Scholar
  363. 357.
    Kaiser, A. D., Two sequence-specific DNA-protein recognition systems, in “The Neurosciences, A second Study Program” (F. O. Schmitt, ed.), p. 955, Rockefeller University Press, New York (1970).Google Scholar
  364. 358.
    Kasten, F., Personal communication (1968).Google Scholar
  365. 359.
    Kavenoff, R., One chromatid, one piece of DNA, J. Cell Biol. 47: 103a (1970).Google Scholar
  366. 360.
    Kaye, J. S., and R. McMaster-Kaye, The fine structure and chemical composition of nuclei during spermiogenesis in the house cricket. I. Initial stages of differentiation and the loss of nonhistone protein, J. Ce!! Biol. 31: 159 (1966).CrossRefGoogle Scholar
  367. 361.
    Kedes, L. H., and M. L. Birnstiel, Reiteration and clustering of DNA sequences complementary to histone messenger RNA, Nature New Biol. 230: 165 (1971).PubMedGoogle Scholar
  368. 362.
    Kedinger, C., M. Gniazdowski, J. L. Mandel, Jr., F. Gissinger, and P. Chambon, a-Amanitin: A specific inhibitor of one of two DNA-dependent RNA polymerase activities from calf thymus, Biochem. Biophys. Res. Commun. 38: 165 (1970).PubMedCrossRefGoogle Scholar
  369. 363.
    Keyl, H. G., A demonstrable local and geometric increase in the chromosomal DNA of Chironomus, Experientia 21: 191 (1965).PubMedCrossRefGoogle Scholar
  370. 364.
    Kihlman, B. A., and B. Hartley, “Sub-chromatid” exchanges and the “folded fiber” model of chromosome structure, Hereditas 57: 289 (1967).Google Scholar
  371. 365.
    King, J. L., and T. H. Jukes, Non-darwinian evolution, Science 164: 788 (1969).PubMedCrossRefGoogle Scholar
  372. 366.
    Kinkade, J. M., and R. D. Cole, The resolution of four lysine-rich histones derived from calf thymus, J. Biol. Chem. 241: 5790 (1966).PubMedGoogle Scholar
  373. 367.
    Kinkade, J. M., and R. D. Cole, A structural comparison of different lysine-rich histones of calf thymus, J. Biol. Chem. 241: 5798 (1966).PubMedGoogle Scholar
  374. 368.
    Kit, S., Species differences in animal deoxyribonucleic acids as revealed by equilibrium sedimentation in density gradients, Nature 193: 274 (1962).PubMedCrossRefGoogle Scholar
  375. 369.
    Klein, M. L., and M. H. Makman, Adenosine 3’, 5’-monophosphate-dependent protein kinase of cultured mammalian cells, Science 172: 863 (1971).PubMedCrossRefGoogle Scholar
  376. 370.
    Kleinsmith, L. J., and V. G. Allfrey, Nuclear phosphoproteins. I. Isolation and characterization of a phosphoprotein fraction from calf thymus nuclei, Biochim. Biophys. Acta 175: 123 (1969).PubMedCrossRefGoogle Scholar
  377. 371.
    Kleinsmith, L. J., and V. G. Allfrey, Nuclear phosphoproteins. II. Metabolism of exogenous phosphoprotein by intact nuclei, Biochim. Biophys. Acta 175: 136 (1969).PubMedCrossRefGoogle Scholar
  378. 372.
    Kleinsmith, L. J., V. G. Allfrey, and A. E. Mirsky, Phosphoprotein metabolism in isolated nuclei, Proc. Nat. Acad. Sci. U.S. 55: 1182 (1966).CrossRefGoogle Scholar
  379. 373.
    Kleinsmith, L. J., V. G. Allfrey, and A. E. Mirsky, Phosphorylation of nuclear protein early in the course of gene activation in lymphocytes, Science - 154: 780 (1966).Google Scholar
  380. 374.
    Kleinsmith, L. J., J. Heidema, and A. Carrol, Specific binding of rat liver proteins to DNA, Nature 226: 1025 (1970).PubMedCrossRefGoogle Scholar
  381. 375.
    Klevecz, R. R., Synthesis of enzymes and DNA in the cell cycle, J. Cell Biol. 47: 108a (1970).Google Scholar
  382. 376.
    Klinger, H.R., H.G. Schwarzacher, and J. Weiss, DNA content and area of sex chromatin positive and negative nuclei during the cell cycle, Cytogenetics 6: 1 (1967).PubMedCrossRefGoogle Scholar
  383. 377.
    Kluss, B. C., Electron microscopy of the macronucleus of Euplotes eurystomus, J. Cell Biol. 13: 462 (1962).PubMedCrossRefGoogle Scholar
  384. 378.
    Knippers, R., DNA polymerase II, Nature 228: 1050 (1970).PubMedCrossRefGoogle Scholar
  385. 379.
    Konrad, C. G., Protein synthesis and RNA synthesis during mitosis in animal cells, J. Cell Biol. 19: 267 (1963).PubMedCrossRefGoogle Scholar
  386. 380.
    Kornberg, T., and M. L. Gefter, Purification and DNA synthesis in cell-free extracts: properties of DNA polymerase II, Proc. Nat. Acad. Sci. U.S. 68: 761 (1971).CrossRefGoogle Scholar
  387. 381.
    Koslov, Y. V., and G. P. Georgiev, Mechanism of inhibitory action of histones on DNA template activity in vitro, Nature 228: 245 (1970).PubMedCrossRefGoogle Scholar
  388. 382.
    Kossel, A. Z., Physiol. Chem. 8: 511, 1884, Ref. in M. J. Luck, Histone chemistry: the pioneers, in “The Nucleohistones” (J. Bonner and P. Ts’o, eds.), p. 3, Holden-Day, Inc., San Francisco (1964).Google Scholar
  389. 383.
    Krauze, R. J., A. J. MacGillivray, and J. Paul, The use of polyethylenesulphonate in the fractionation of proteins and some aspects of its application to the separation of chromatin proteins, Biochem. J. 114: 40P (1969).PubMedGoogle Scholar
  390. 384.
    Krueger, R. G., and B. J. McCarthy, Hybridization studies with nucleic acids from murine plasma cell tumors, Biochem. Biophys. Res. Commun. 41: 944 (1970).PubMedCrossRefGoogle Scholar
  391. 385.
    Kuhlmann, W., H.-G. Fromme, E.-M. Heege, and W. Ostertag, The mutagenic action of caffeine in higher organisms, Canc. Res. 28: 2375 (1968).Google Scholar
  392. 386.
    Kuntzel, H., and K. P. Schafer, Mitochondrial RNA polymerase from Neurospora crassa, Nature New Biol. 231: 265 (1971).PubMedCrossRefGoogle Scholar
  393. 387.
    Kunz, W., J. Niessing, B. Schnieders, and C. E. Sekeris, Characterization of rapidly labeled rat liver ribonucleic acid showing high affinity for columns of methylated albumin on Kieselguhr, Biochem. J. 116: 563 (1970).PubMedGoogle Scholar
  394. 388.
    Laird, C. D., Chromatid structure: Relationship between DNA content and nucleotide sequence diversity, Chromosoma 32: 378 (1971).PubMedCrossRefGoogle Scholar
  395. 389.
    Laird, C. D., and B. J. McCarthy, Molecular characterization of the Drosophila genome, Genetics 63: 865 (1969).PubMedGoogle Scholar
  396. 390.
    Lampert, F., and P. Lampert, Ultrastructure of the human chromosome fiber, Humangenetik 11: 9 (1970).PubMedCrossRefGoogle Scholar
  397. 391.
    Langan, T. A., A phosphoprotein preparation from liver nuclei and its effect on the inhibition of RNA synthesis by histones, in “Regulation of Nucleic Acid and Protein Biosynthesis” (V. V. Konigsberger and L. Bosch, eds.), p. 233, Elsevier, Amsterdam (1966).Google Scholar
  398. 392.
    Langan, T. A., Phosphorylation of liver histone following the administration of glucagon and insulin, Proc. Nat. Acad. Sci. U.S. 64: 1276 (1969).CrossRefGoogle Scholar
  399. 393.
    Langan, T. A., Action of adenosine 3’5’-monophosphate-dependent histone kinase in vivo, J. Biol. Chem. 244: 5763 (1969).PubMedGoogle Scholar
  400. 394.
    Langan, T. A., and L. Smith, The effect of a phosphoprotein preparation from liver nuclei on the inhibition of RNA synthesis by histones, Fed. Proc. 25: 778 (1966).Google Scholar
  401. 395.
    Langendorf, H., G. Siebert, I. Lorenz, R. Hannover, and R. Beyer, Kationenverteilung in Zellkern und Cytoplasma der Rattenleber, Biochem. Z. 335: 273 (1961).PubMedGoogle Scholar
  402. 396.
    Lark, K. G., Regulation of chromosome replication and segregation in bacteria, Bacteriol. Rev. 30: 3 (1966).PubMedGoogle Scholar
  403. 397.
    Lark, K. G., R. Consigli, and A. Toliver, DNA replication in Chinese hamster cells: Evidence for a single replication fork per replicon, J. Mol. Biol. 58: 873 (1971).PubMedCrossRefGoogle Scholar
  404. 398.
    Lee, Y. C., and O. H. Scherbaum, Nucleohistone composition in stationary and division synchronized Tetrahymena cultures, Biochemistry 5: 2067 (1966).PubMedCrossRefGoogle Scholar
  405. 399.
    Lee, S. Y., J. Mendecki, and G. Brawerman, A polynucleotide segment rich in adenylic acid in the rapidly-labeled polyribosomal RNA component of mouse sarcome 180 ascites cells, Proc. Nat. Acad. Sci. U.S. 68: 1131 (1971).CrossRefGoogle Scholar
  406. 400.
    Lee, J. C., and J. J. Yunis, A developmental study of constitutive heterochromatin in Microtus agrestis, Chromosoma 32: 237 (1971).PubMedCrossRefGoogle Scholar
  407. 401.
    Lefevre, G., Salivary chromosome bands and the frequency of crossing over in Drosophila melanogaster, Genetics 67: 497 (1971).PubMedGoogle Scholar
  408. 402.
    Levan, A., The effect of colchicine on root mitoses in Allium, Hereditas 24: 471 (1938).CrossRefGoogle Scholar
  409. 403.
    Levan, A., Heterochromaty in chromosomes during their contraction phase, Hereditas 32: 449 (1946).PubMedCrossRefGoogle Scholar
  410. 404.
    Levis, A. G., V. Krsmanovil, A. Miller-faures, and M. Errera, A fraction of newly synthesized DNA of HeLa cells, Europ. J. Biochem. 3: 57 (1967).PubMedCrossRefGoogle Scholar
  411. 405.
    Lewis, E. B., The phenomenon of position effect, Adv. Genetics 3: 73 (1950).CrossRefGoogle Scholar
  412. 406.
    Lewis, E. B., Genetic control and regulation of developmental pathways, in “The Role of Chromosomes in Development” (M. Locke, ed.), p. 231, Academic Press, New York (1964).CrossRefGoogle Scholar
  413. 407.
    Lim, and E. S. Canellakis, Adenine-rich polymer association with rabbit reticulocyte messenger RNA, Nature 227: 710 (1970).CrossRefGoogle Scholar
  414. 408.
    Lima-de-Faria, A., Differential uptake of tritiated thymidine into hetero-and euchromatin in Melanopus and Secale, J. Biophys. Biochem. Cytol. 6: 457 (1959).PubMedCrossRefGoogle Scholar
  415. 409.
    Lima-de-Faria, A., and H. Jaworska, Late DNA synthesis in heterochromatin, Nature 217: 138 (1968).PubMedCrossRefGoogle Scholar
  416. 410.
    Lima-de-Faria, A., M. Birnstiel, and H. Jaworska, Amplification of ribosomal cistrons in the heterochromatin of Acheta, Genetics Suppl. 1 61: 145 (1969).Google Scholar
  417. 411.
    Lin, S.-Y., and A. D. Riggs, Lac repressor binding to DNA not containing the lac operator and to synthetic poly dAT, Nature 228: 1184 (1970).PubMedCrossRefGoogle Scholar
  418. 412.
    Lindahl-Kiessling, K., B. Santesson, and J. A. Book, Chromosome and chromatid-type aberrations induced by cobalt-60 and tritiated uridine in human leukocyte cultures, Chromosoma 31: 280 (1970).PubMedCrossRefGoogle Scholar
  419. 413.
    Lindell, T. J., F. Weinberg, P. Morris, R. G. Roeder, and W. J. Rutter, Specific inhibition of nuclear RNA polymerase II by a-amantin, Science 170: 447 (1970).PubMedCrossRefGoogle Scholar
  420. 414.
    Lindberg, U., and J. E. Darnell, SV40-specific RNA in the nucleus and polyribosomes of transformed cells, Proc. Nat. Acad. Sci. U.S. 65: 1089 (1970).CrossRefGoogle Scholar
  421. 415.
    Lorick, G., Differential DNA synthesis in heterochromatic and euchromatic chromosome sets of Planococcus citri, Chromosoma 32: 11 (1970).PubMedCrossRefGoogle Scholar
  422. 416.
    Losick, R., and A. L. Sonenshein, Change in the template specificity of RNA polymerase during sporulation of Bacillus subtilis, Nature 224: 35 (1969).Google Scholar
  423. 417.
    Losick, R., R. G. Shorenstein, and A. L. Sonenshein, Structural alteration of RNA polymerase during sporulation, Nature 227: 910 (1970).PubMedCrossRefGoogle Scholar
  424. 418.
    Lung, B., Whole-mount electron microscopy of chromatin and membranes in bull and human sperm heads, J. Ultrastruc. Res. 22: 485 (1968).CrossRefGoogle Scholar
  425. 419.
    Luzzati, V., and Nicolaieff, A., The structure of nucleohistones and nucleoprotamines, J. Mol. Biol. 7: 142 (1963).PubMedCrossRefGoogle Scholar
  426. 420.
    Lyon, M. F., Some evidence concerning the “mutational load” in inbred strains of mice, Heredity 13: 341 (1959).CrossRefGoogle Scholar
  427. 421.
    Lyon, M. F., Gene action in the X-chromosome of the mouse (Mus musculus), Nature 190: 372 (1961).PubMedCrossRefGoogle Scholar
  428. 422.
    Lyon, M. F., Chromosomal and subchromosomal inactivation, Ann. Rev. Genet. 2: 31 (1968).CrossRefGoogle Scholar
  429. 423.
    Lyon, M. F., Possible mechanisms of X chromosome inactivation, Nature New Biol. 232: 229 (1971).PubMedGoogle Scholar
  430. 424.
    MacGillivray, A. J., D. Carroll, and J. Paul, The heterogeneity of the non-histone chromatin proteins from mouse tissues, FEBS Ltrs. 13: 204 (1971).CrossRefGoogle Scholar
  431. 425.
    MacGallivray, A. J., and P. P. P. V. Monjardino, Phytohaemagglutinin and the acetylation of lymphocyte histones, Biochem. J. 108: 22P (1968).Google Scholar
  432. 426.
    Macgregor, H. C., and J. Kezer, The chromosomal localization of a heavy satellite DNA in the testis of Plethodon c. cinereus, Chromosoma 33: 167 (1971).PubMedCrossRefGoogle Scholar
  433. 427.
    Mackay, M., C. A. Hilgartner, and A. L. Dounce, Further studies of DNA-nucleoprotein gels and residual protein of isolated cell nuclei, Exp. Cell Res. 49: 533 (1968).PubMedCrossRefGoogle Scholar
  434. 428.
    Maio, J. J., and C. L. Schildkraut, Isolated mammalian metaphase chromosomes. I. General characteristics of nucleic acids and proteins, J. Mol. Biol. 24: 29 (1967).CrossRefGoogle Scholar
  435. 429.
    Maio, J. J., and C. L. Schildkraut, Isolated mammalian metaphase chromosomes. II. Fractionated chromosomes of mouse and Chinese hamster cells, J. Mol. Biol. 40: 203 (1969).PubMedCrossRefGoogle Scholar
  436. 430.
    Maio, J. J., DNA strand reassociation and polyribonucleotide binding in the African Green Monkey, Cercopithecus aethiops, J. Mol. Biol. 56: 579 (1971).CrossRefGoogle Scholar
  437. 431.
    Makman, R. S., and E. W. Sutherland, Adenosine 3’,5’-phosphate in Escherichia coli, J. Biol. Chem. 240: 1309 (1965).PubMedGoogle Scholar
  438. 432.
    Mancino, G., I. Nardi, N. Corvaja, L. Fiume, and V. Marinozzi, Effects of aamanitin on Triturus lampbrush chromosomes, Exp. Cell Res. 64: 237 (1971).PubMedCrossRefGoogle Scholar
  439. 433.
    Manton, I., New evidence on the telophase split in Todea barbara, Am. J. Bot. 32: 342 (1945).CrossRefGoogle Scholar
  440. 434.
    Marialuisa, M., C. Whitfield, K. V. Rao, M. Richardson, and J. C. Bishop, DNA-RNA hybridization in vast DNA excess, Nature New Biol. 231: 8 (1971).Google Scholar
  441. 435.
    Marmur, H. R., and G. R. Chalkley, Some properties of a nuclear binding site of estradiol, J. Mol. Biol. 27: 431 (1967).Google Scholar
  442. 436.
    Marushige, K., and J. Bonner, Template properties of liver chromatin, J. Mol. Biol. 15: 160 (1966).PubMedCrossRefGoogle Scholar
  443. 437.
    Marvin, D. A., Control of DNA replication by membrane, Nature 219: 485 (1968).PubMedCrossRefGoogle Scholar
  444. 438.
    Mather, K., The genetical activity of heterochromatin, Proc. Roy. Soc. Lond. Ser. B 132: 308 (1945).Google Scholar
  445. 439.
    Mattoccia, E., and D. E. Comings, Buoyant density and satellite composition of DNA of mouse heterochromatin, Nature New Biol. 229: 175 (1971).PubMedGoogle Scholar
  446. 440.
    Maul, G. G., Personal communication (1971).Google Scholar
  447. 441.
    Maul, G. G., and T. H. Hamilton, The intranuclear localization of two DNA-dependent RNA polymerase activities, Proc. Nat. Acad. Sci. U.S. 57: 1371 (1967).CrossRefGoogle Scholar
  448. 442.
    Mayer, D. T., and A. Gulick, The nature of the proteins of cellular nuclei, J. Biol. Chem. 146: 433 (1942).Google Scholar
  449. 443.
    Mayfield, J. E., and J. Bonner, A partial sequence of nuclear events in regenerating rat liver, Proc. Nat. Acad. Sci. U.S. 69: 7 (1972).CrossRefGoogle Scholar
  450. 444.
    Mazia, D., The analysis of cell reproduction, Ann. N.Y. Acad. Sci. 90: 455 (1960).PubMedCrossRefGoogle Scholar
  451. 445.
    Mazia, D., Personal communication.Google Scholar
  452. 446.
    Mazrimas, J. A., and F. T. Hatch, Intranuclear distribution of satellite DNA from kangaroo rat, Exp. Cell Res. 63: 462 (1970).PubMedCrossRefGoogle Scholar
  453. 447. McClintock, B., Controlling elements and the gene, Cold Spr. Hart). Symp. Quant. Biol. 21: 197 (1956).Google Scholar
  454. 448.
    McClure, M. E., and L. S. Hnlica, Temporal patterns of chromatin biosynthesis and activity in synchronized Chinese hamster cell culture, J. Cell Biol. 47: 133a (1970).Google Scholar
  455. 449.
    McConaughy, B. L., and B. J. McCarthy, Related base sequences in the DNA of simple and complex organisms. VI. The extent of base sequence divergence among the DNAs of various rodents, Biochem. Genetics 4: 425 (1970).CrossRefGoogle Scholar
  456. 450.
    Meisler, M. H., and T. A. Langan, Enzymatic phosphorylation and dephosphorylation of histones and protamines, J. Cell Biol. 35: 91A (1967).Google Scholar
  457. 451.
    Meselson, M., and F. W. Stahl, The replication of DNA in Escherichia coli, Proc. Nat. Acad. Sci. U.S. 44: 671 (1958).CrossRefGoogle Scholar
  458. 452.
    Michie, D., Affinity: A new genetic phenomenon in the house mouse, Nature 71: 26 (1953).Google Scholar
  459. 453.
    Michie, D., `Affinity,’ Proc. Roy. Soc. London, Ser. B 144: 241 (1955).Google Scholar
  460. 454.
    Miescher, F., Med. Chem. Untersuch (Hoppe-Seyler) Pt. 4, p. 441, 1871, Ref. in M. J. Luck, Histone chemistry: the pioneers, in “The Nucleohistones” (J. Bonner and P. Ts’o, eds.), p. 3, Holden-Day, Inc., San Francisco (1964).Google Scholar
  461. 455.
    Miller, G., L. Berlowitz, and W. Regelson, Chromatin and histones in mealy bug cell explants: Activation and decondensation of facultative heterochromatin by a synthetic polyanion, Chromosoma 32: 251 (1971).PubMedCrossRefGoogle Scholar
  462. 456.
    Miller, J. H., Transcription starts and stops in the lac operon, in “The Lactose Operon” (J. R. Beckwith and D. Zipser, eds.), p. 173, Cold Spring Harbor Laboratory (1970).Google Scholar
  463. 457.
    Miller, O. J., Autoradiography in human chromosomes, in “Advances in Human Genetics” (H. Harris and K. Hirschhorn, eds.), Vol. 1, p. 35, Plenum Press, New York (1970).Google Scholar
  464. 458.
    Miller, O. L., Fine structure of lampbrush chromosomes, Nat. Canc. Inst. Monographs 18: 79 (1965).Google Scholar
  465. 459.
    Miller, O. L., Portrait of a gene, J. Cellul. Physiol. Suppl. 1 74: 225 (1969).Google Scholar
  466. 460.
    Miller, O. L., and B. R. Beatty, Extrachromosomal nucleolar genes in amphibian oocytes, Genetics Suppl. 1 61: 133 (1969).Google Scholar
  467. 461.
    Miller, O. L., B. A. Hamkal, and C. A. Thomas, Visualization of bacterial genes in action, Science 169: 392 (1970).PubMedCrossRefGoogle Scholar
  468. 462.
    Miller, Z., H. E. Varmus, J. S. Parks, R. L. Perlman, and I. Pastan, Regulation of gal messenger ribonucleic acid synthesis in Escherichia coli by 3’,5’-cyclic adenosine monophosphate, J. Biol. Chem. 246: 2898 (1971).PubMedGoogle Scholar
  469. 462a.
    Milner, G. R., Nuclear ultrastructure of the transforming lymphocyte during inhibition of deoxyribonucleic acid synthesis with hydroxyurea. J. Cell Sci. 4: 583 (1969).PubMedGoogle Scholar
  470. 462b.
    Milner, G. R., Nuclear morphology and the ultrastructural localization of deoxyribonucleic acid synthesis during interphase. J. Cell Sci. 4: 569 (1969).PubMedGoogle Scholar
  471. 463.
    Milner, P. F., J. B. Clegg, and D. J. Weatherall, Haemoglobin H disease due to a unique haemoglobin variant with an elongated a-chain, Lancet 1: 729 (1971).PubMedCrossRefGoogle Scholar
  472. 463a.
    Mirsky, A. E., The structure of chromatin, Proc. Nat. Acad. Sci. U.S. 68: 2945 (1971).CrossRefGoogle Scholar
  473. 464.
    Mirsky, A. E., and A. W. Pollister, Chromosin: A desoxyribose nucleoprotein complex of the cell nucleus, J. Gen. Physiol. 30: 117 (1946).PubMedCrossRefGoogle Scholar
  474. 465.
    Mirsky, A. E., and H. Ris, The chemical composition of isolated chromosomes, J. Gen. Physiol. 31: 7 (1947).PubMedCrossRefGoogle Scholar
  475. 466.
    Mirsky, A. E., and H. Ris, The composition and structure of isolated chromosomes, J. Gen. Physiol. 34: 475 (1951).PubMedCrossRefGoogle Scholar
  476. 467.
    Mirsky, A. E., and H. Ris, The desoxyribonucleic acid content of animal cells and its evolutionary significance, J. Gen. Physiol. 34: 451 (1951).PubMedCrossRefGoogle Scholar
  477. 468.
    Mizuno, N. S., C. E. Stoops, and A. A. Sinha, DNA synthesis associated with the inner nuclear membrane of the nuclear envelope, Nature 229: 22 (1971).CrossRefGoogle Scholar
  478. 470.
    Monroe, J. H., G. Schidlovsky, and S. Chandra, Membrane pores and herpesvirustype particles in negatively stained whole cells, J. Ultrastruc. Res. 21: 134 (1967).CrossRefGoogle Scholar
  479. 471.
    Moore, R. L., and B. J. McCarthy, Related base sequences in the DNA of simple and complex organisms. III. Variability in the base sequence of the reduplicated genes for ribosomal RNA in the rabbit, Biochem. Genetics 2: 75 (1968).CrossRefGoogle Scholar
  480. 472.
    Moses, M. J., Synaptinemal complex, Ann. Rev. Genet. 2: 363 (1968).CrossRefGoogle Scholar
  481. 472a.
    Moses, M. J., and J. R. Coleman, Structural and functional organization of chromosomes, in “The Role of Chromosomes in Development” (M. Locke, ed.), p. 11, Academic Press, New York, (1964).CrossRefGoogle Scholar
  482. 473.
    Muller, H. J., The gene material as the initiator and the organizing basis of life, in “Heritage from Mendel” (R. A. Brink and E. D. Styles, eds.), p. 419, University of Wisconsin Press, Madison (1967).Google Scholar
  483. 474.
    Muller, H. J., and T. S. Painter, The differentiation of the sex chromosomes of Drosophila into genetically active and inert regions, Zeit. f Abst. u. Verebungsl. 62: 316 (1932).Google Scholar
  484. 475.
    Muller-Hill, B., L. Crapo, and W. Gilbert, Mutants that make more lac repressor, Proc. Nat. Acad. Sci. U.S. 59: 1259 (1968).Google Scholar
  485. 476.
    Murray, K., E. M. Bradbury, C. Crane-Robinson, R. M. Seephens, A. J. Haydon, and A. R. Peacock, The dissociation of chicken erythrocyte deoxyribonucleoprotein and some properties of its partial nucleoproteins, Biochem. J. 120: 859 (1970).PubMedGoogle Scholar
  486. 477.
    Murray, R. G., A. S. Murray, and A. Pizzo, The fine structure of mitosis in rat thymic lymphocytes, J. Cell Biol. 26: 601 (1965).PubMedCrossRefGoogle Scholar
  487. 478.
    Naora, H., Deoxyribonucleic acid-dependent protein synthesis in nuclear ribosome system in vitro, Biochim. Biophys. Acta 123: 151 (1966).CrossRefGoogle Scholar
  488. 479.
    Nebel, B. R., Chromosome structure in Tradescantia. I. Methods and morphology, Z. Zellforsch. u. mikr. anat. 16: 251 (1932).CrossRefGoogle Scholar
  489. 480.
    Neelin, J. M., Histones from chicken erythrocyte nuclei, in “The Nucleohistones” (J. Bonner and P. Ts’o, eds.), p. 66, Holden-Day, Inc., San Francisco (1964).Google Scholar
  490. 481.
    Nur, U., Nonreplication of heterochromatic chromosomes in a mealy bug, Plano-coccus citri (Coccoidea: Homoptera), Chromosóma 19: 439 (1966).CrossRefGoogle Scholar
  491. 482.
    Nur, U., Reversal of heterochromatinization and the activity of the paternal chromosome set in the male mealy bug, Genetics 56: 375 (1967).PubMedGoogle Scholar
  492. 483.
    Nur, U., Translocations between éu-and heterochromatic chromosomes, and spermatocytes lacking a heterochromatic set in male mealy bugs, Chromosoma 29: 42 (1970).PubMedCrossRefGoogle Scholar
  493. 484.
    O’Brien, R. L., A. B. Sanyal, and R. H. Stanton, Association of DNA replication with the nuclear membrane of HeLa cells, Exp. Cell Res. 70: 106 (1972).PubMedCrossRefGoogle Scholar
  494. 485.
    Ockey, C. H., Distribution of DNA replicator sites in mammalian nuclei. II. Effects of prolonged inhibition of DNA synthesis, Exp. Cell Res. 70: 203 (1972).PubMedCrossRefGoogle Scholar
  495. 486.
    O’Conner, P. J., An alkaline deoxyribonuclease from rat liver nonhistone chromatin proteins, Biochem. Biophys. Res. Commun. 35: 805 (1969).Google Scholar
  496. 487.
    Ogawa, Y., G. Quagliarotti, J. Jordan, C. W. Taylor, W. C. Starbuck, and H. Busch, Structural analysis of the glycine-rich, arginine-rich histone, J. Biol. Chem. 244: 4387 (1969).PubMedGoogle Scholar
  497. 488.
    Ohba, Y., Structure of nucleohistone. I. Hydrodynamic behavior, Biochim. Biophys. Acta 123: 76 (1966).PubMedCrossRefGoogle Scholar
  498. 489.
    Ohno, S., Simplicity of mammalian inferred by single gene determination of sex phenotypes, Nature 234: 134 (1971).CrossRefGoogle Scholar
  499. 490.
    Ohno, S., “Evolution by Gene Duplication,” Springer-Verlag, New York, (1970).Google Scholar
  500. 491.
    Ohno, S., “So Much `Junk’ DNA in our Genome,” Brookhaven Symposium, (in press).Google Scholar
  501. a. Ohno, S., “Sense” and “Nonsense” DNA in our genome, J. Human Evolution (in press).Google Scholar
  502. 492.
    Ohno, S., and Atkin, N. B., Comparative DNA values and chromosome complements of eight species of fishes, Chromosoma 18: 455 (1966).PubMedCrossRefGoogle Scholar
  503. 493.
    Ohno, S., W. D. Kaplan, and R. Kinosita, Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus, Exp. Cell Res. 18: 415 (1959).CrossRefGoogle Scholar
  504. 494.
    Ohno, S., W. D.. Kaplan, and R. Kinosita, X-chromosome behavior in germ and somatic cell of Rattus norvegicus, Exp. Cell Res. 22: 535 (1961).CrossRefGoogle Scholar
  505. 495.
    Ohno, S., H. P. Klinger, and N. B. Atkin, Human oogenesis, Cytogenetics 1: 42 (1962).PubMedCrossRefGoogle Scholar
  506. 496.
    Ohno, S., and S. Makino, The single-X nature of sex chromatin in man, Lancet 1: 78 (1961).PubMedCrossRefGoogle Scholar
  507. 497.
    Ohno, S., U. Tettenborn, and R. Dofuku, Molecular biology of sex differentiation, Hereditas 69: 107 (1971).PubMedCrossRefGoogle Scholar
  508. 498.
    Ohnuki, Y., Structure of chromosomes. I. Morphological studies of the spiral structure of human somatic chromosomes, Chromosoma 25: 402 (1968).PubMedCrossRefGoogle Scholar
  509. 499.
    Ohta, T., and M. Kimura, Functional organization of genetic material as a product of molecular evolution, Nature 233: 118 (1971).PubMedCrossRefGoogle Scholar
  510. 500.
    Okazaki, R., K. Sugimoto, T. Okazaki, and A. Sugino, DNA chain growth: in vivo and in vitro synthesis in a DNA polymerase-negative mutant of E. coli, Nature 228: 223 (1970).CrossRefGoogle Scholar
  511. 501.
    Olins, D. E., Interaction of lysine-rich histones and DNA, J. Mol. Biol. 43: 439 (1969).PubMedCrossRefGoogle Scholar
  512. 502.
    Oriel, P. J., Optical rotary dispersion of calf thymus deoxyribonucleoprotein, Arch. Biochem. Biophys. 115: 577 (1966).PubMedCrossRefGoogle Scholar
  513. 503.
    Ormerod, M. G., and A. R. Lehmann, The release of high molecular weight DNA from a mammalian cell (L5178Y). Attachment of the DNA to the nuclear membrane, Biochim. Biophys. Acta 228: 331 (1971).PubMedCrossRefGoogle Scholar
  514. 504.
    Osgood, E. W., D. P. Jenkins, R. Brooks, and R. K. Lawson, Electron micrographic studies of the expanded and uncoiled chromosomes from human leukocytes, Ann. N.Y. Acad. Sci. 113:717 (1963–64).Google Scholar
  515. 505.
    Ostergren, G., and T. Wakonig, True or apparent sub-chromatid breakage and the induction of labile states in cytological chromosome lock, Bot. Notiser 4: 357 (1955).Google Scholar
  516. 506.
    Pallotta, D., L. Berlowitz, and L. Rodriguez, Histones of genetically active and inactive chromatin in mealy bugs, Exp. Cell Res. 60: 474 (1970).Google Scholar
  517. 507.
    Panyim, S., and R. Chalkley, The heterogeneity of histones. I. A quantitative analysis of calf histones in very long polyarcylamide gels, Biochemistry 8: 3972 (1969).PubMedCrossRefGoogle Scholar
  518. 508.
    Panyim, S., and R. Chalkley, A new histone found only in mammalian tissues with little cell division, Biochem. Biophys. Res. Commun. 37: 1042 (1969).PubMedCrossRefGoogle Scholar
  519. 509.
    Pardon, J. F., and B. M. Richards, Model building studies on the structure of deoxyribonucleohistone, Biochem. J. 117: 58 (1970).Google Scholar
  520. 510.
    Pardon, J. F., M. H. F. Wilkins, and B. M. Richards, Super-helical model for nucleohistone, Nature 215: 508 (1967).PubMedCrossRefGoogle Scholar
  521. 511.
    Pardue, M. L., and J. G. Gall, Molecular hybridization of radioactive DNA to the DNA of cytological preparations, Proc. Nat. Acad. Sci. U.S. 64: 600 (1969).CrossRefGoogle Scholar
  522. 512.
    Pardue, M. L., and J. G. Gall, Chromosomal localization of mouse satellite DNA, Science 168: 1356 (1970).PubMedCrossRefGoogle Scholar
  523. 513.
    Pardue, M. L., S. A. Gerbi, R. A. Eckhardt, and J. G. Gall, Cytological localization of DNA complementary to ribosomal RNA in polytene chromosomes of Diptera, Chromosoma 29: 268 (1970).CrossRefGoogle Scholar
  524. 514.
    Patau, K., Banded chromosomes in man, IVth Internat. Cong. Human Genetics, Paris, Sept. 1971, and Excerpta Med. Internat. Conq. Ser. 233: 140 (1971).Google Scholar
  525. 515.
    Patel, G., R. Howk, and T. Y. Wang, Partial purification of a DNA-polymerase from the non-histone chromatin proteins of rat liver, Nature 215: 1488 (1967).PubMedCrossRefGoogle Scholar
  526. 516.
    Patel, G., V. Patel, T. Y. Wang, and C. R. Zobel, Studies of the nuclear residual proteins, Arch. Biochem. Biophys. 128: 654 (1968).PubMedCrossRefGoogle Scholar
  527. 517.
    Patel, G., and T. Y. Wang, Protein synthesis in nuclear residual protein, Biochim. Biophys. Acta 95: 314 (1965).PubMedCrossRefGoogle Scholar
  528. 518.
    Patel, G., and T. Y. Wang, Isolation of an active complex of DNA-RNA protein from nuclear residual fraction, Life Sci. 4: 1481 (1965).PubMedCrossRefGoogle Scholar
  529. 519.
    Patil, S. R., S. Merrick, and H. A. Lubs, Identification of each human chromosome with a modified Giemsa stain, Science 173: 821 (1971).PubMedCrossRefGoogle Scholar
  530. 520.
    Patrizi, G., J. N. Middlekamp, and C. A. Reed, Reduplication of nuclear membranes in tissue culture cells infected with guinea pig cytomegalovirus, Am. J. Path. 50: 779 (1967).PubMedGoogle Scholar
  531. 521.
    Paul, J., and R. S. Gilmour, Template activity of DNA is restricted in chromatin, J. Mol. Biol. 16: 242 (1966).PubMedCrossRefGoogle Scholar
  532. 522.
    Paul, J., and R. S. Gilmour, Organ-specific restriction of transcription in mammalian chromatin, J. Mol. Biol. 34: 305 (1968).PubMedCrossRefGoogle Scholar
  533. 523.
    Pavan, C., Two types of heterochromatin in Drosophila nebulosa, Proc. Nat. Acad. Sci. U.S. 32: 137 (1946).CrossRefGoogle Scholar
  534. 524.
    Pavan, C., and A. B. daCunha, Gene amplification in ontogeny and phylogeny of animals, Genetics Suppl. 1, 61: 298 (1969).Google Scholar
  535. 525.
    Peacock, W. J., Chromosome duplication and structure as determined by auto-radiography, Proc. Nat. Acad. Sci. U.S. 49: 793 (1963).CrossRefGoogle Scholar
  536. 526.
    Peacock, W. J., Chromosome replication, Nat. Canc. Inst. Monograph 18: 101 (1965).Google Scholar
  537. 527.
    Pelling, C., Puff RNA in polytene chromosomes, Cold Spr. Harb. Symp. Quant. Biol. 35: 521 (1970).CrossRefGoogle Scholar
  538. 528.
    Penman, S., C. Vesco, and M. Penman, Localization and kinetics of formation of nuclear heterodisperse RNA, cytoplasmic heterodisperse RNA and polyribosomeassociated messenger RNA in HeLa cells, J. Mol. Biol. 34: 49 (1968).PubMedCrossRefGoogle Scholar
  539. 529.
    Penman, S., H. Fan, S. Perlman, M. Rosbash, R. Weinberg, and E. Zylber, Distinct RNA synthesis systems of the HeLa cell, Cold Spr. Harb. Symp. Quant. Biol. 35: 561 (1970).CrossRefGoogle Scholar
  540. 530.
    Penman, S., M. Rosbash, and M. Penman, Messenger and heterogeneous nuclear RNA in HeLa cells: Differential inhibition by cordycepin, Proc. Nat. Acad. Sci. U.S. 67: 1878 (1970).CrossRefGoogle Scholar
  541. 531.
    Pera, F., Struktur und Position der heterochromatischen Chromosomen in Interphasekernen von Microtus agrestis, Z. Zellforsch. 98: 421 (1969).CrossRefGoogle Scholar
  542. 532.
    Pera, F., and H. G. Schwarzacher, Formation and division of binucleated cells in kidney cell cultures of Microtus agrestis, Humangenetik 6: 158 (1968).PubMedCrossRefGoogle Scholar
  543. 533.
    Pera, F., and H. G. Schwarzacher, Die Verteilung der Chromosomen auf die Trochterzellkerne multipolar Mitosen in euploiden Gewebkulturen von Microtus agrestis, Chromosoma 26: 337 (1969).PubMedCrossRefGoogle Scholar
  544. 534.
    Pera, F., and H. G. Schwarzacher, Lokalization der heterochromatischen Chromosomen von Microtus agrestis in Interphase und Mitose, Cytobiologie 2: 188 (1970).Google Scholar
  545. 535.
    Perkowska, E., H. C. Macgregor, and M. L. Birnstiel, Gene amplification in the oocyte nucleus of mutant and wild-type Xenopus laevis, Nature 217: 649 (1968).CrossRefGoogle Scholar
  546. 535a.
    Perry, R. P., Transcription of ribosomal, heterogeneous nuclear, and messenger RNA in eukaryotes, Cold Spring. Harbor Symp. Quant. Biol. 35: 577 (1970).CrossRefGoogle Scholar
  547. 536.
    Phillips, D. M. P., N-terminal acetyl-peptides from two calf thymus histones, Biochem. J. 107: 135 (1968).PubMedGoogle Scholar
  548. 536a.
    Phillips, D. M. P., “Histones and Nucleohistones,” Plenum Press, London (1971).Google Scholar
  549. 537.
    Phillips, D. M. P., and Simpson, P., The C-terminal amino acids, and sequences of calf and rat thymus histones, Biochim. Biophys. Acta 181: 154 (1969).PubMedCrossRefGoogle Scholar
  550. 538.
    Pirrotta, V., P. Chadwick, and M. Ptashne, Active form of two coliphage repressors, Nature 227: 41 (1970).PubMedCrossRefGoogle Scholar
  551. 539.
    Pirrotta, V., and M. Ptashne, Isolation of the 434 phage repressor, Nature 222: 541 (1969).PubMedCrossRefGoogle Scholar
  552. 540.
    Platz, D., M. Kish, and L. J. Kleinsmith, Tissue specificity of nonhistone chromatin phosphoproteins, FEBS Lits. 12: 38 (1970).CrossRefGoogle Scholar
  553. 541.
    Pogo, B. G. T., A. O. Pogo, V. G. Allfrey, and A. E. Mirsky, Changing patterns of histone acetylation and RNA synthesis in regeneration of the liver, Proc. Nat. Acad. Sci. U.S. 59: 1337 (1968).CrossRefGoogle Scholar
  554. 542.
    Pontecorvo, G., “Trends in Genetic Analysis,” Oxford University Press, Oxford (1959).Google Scholar
  555. 543.
    Porter, K., and R. D. Machado, Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip, J. Biophys. Biochem. Cytol. 7: 167 (1960).PubMedCrossRefGoogle Scholar
  556. 544.
    Prescott, D. M., The structure and replication of eukaryotic chromosomes, in “Advances in Cell Biology” (D. M. Prescott, L. Goldstein and E. McConkey, eds.), Appleton-Century Crofts, New York, 1: 57 (1970).Google Scholar
  557. 545. Prescott, D. M., A. R. Stevens, and M. R. Lauth, Characterization of nuclear RNA synthesis in Amoeba proteus, Exp. Cell Res. 64: 145 (1971).Google Scholar
  558. 546.
    Ptashne, M., Isolation of the 2 phage repressor, Proc. Nat. Acad. Sci. U.S. 57: 306 (1967).CrossRefGoogle Scholar
  559. 547.
    Ptashne, M., Specific binding of the A phage repressor to d DNA, Nature 214: 232 (1967).PubMedCrossRefGoogle Scholar
  560. 548.
    Raaf, J., and J. Bonner, Properties of Escherichia coli deoxyribonucleoprotein as compared with the deoxyribonucleoprotein of higher organisms, Arch. Biochem. Biophys. 125: 567 (1968).PubMedCrossRefGoogle Scholar
  561. 549.
    Rae, P. M., Chromosomal distribution of rapidly re-annealing DNA in Drosophila melanogaster, Proc. Nat. Acad. Sci. U.S. 67: 1018 (1970).CrossRefGoogle Scholar
  562. 550.
    Rall, S. C., and R. D. Cole, Sequence of the N-terminal region of a lysine-rich histone from rabbit thymus, Fed. Proc. 29: 534 (1970).Google Scholar
  563. 551.
    Rasmussen, P. S., K. Murray, J. M. Luck, On the complexity of calf thymus histone, Biochemistry 1: 79 (1962).PubMedCrossRefGoogle Scholar
  564. 552.
    Ray-Chaudhuri, S. P., L. Singh, and T. Sharma, Evolution of sex chromosomes and formation of W-chromatin in snakes, Chromosoma 33: 239 (1971).Google Scholar
  565. 551.
    Rees, H., and R. N. Jones, Structural basis of quantitative variation in nuclear DNA, Nature 216: 826 (1967).CrossRefGoogle Scholar
  566. 554.
    Remington, J. A., and R. A. Flickinger, The time of DNA replication in the cell cycle in relation to RNA synthesis in frog embroys, J. Cell Physiol. 77: 411 (1971).PubMedCrossRefGoogle Scholar
  567. 555.
    Richards, B. M., and J. F. Pardon, The molecular structure of nucleohistone (DNH), Exp. Cell Res. 62: 184 (1970).PubMedCrossRefGoogle Scholar
  568. 556.
    Richardson, J. P., Rho factor function in T4 RNA transcription, Cold Spr. Harb. Symp. Quant. Biol. 35: 127 (1970).Google Scholar
  569. 557.
    Riggs, A. D., S. Bourgeois, R. F. Newby, and M. Cohn, DNA binding of the lac repressor, J. Mol. Biol.. 34: 365 (1968).PubMedCrossRefGoogle Scholar
  570. 558. Riggs, A. D., H. Suzuki, and S. Bourgeois, Lac repressor-operator interaction. I. Equilibrium studies, J. Mol. Biol. 48: 67 (1970).Google Scholar
  571. 559.
    Riggs, A. D., R. F. Newby, and S. Bourgeois, Lac repressor-operator interaction. II. Effect of galactosides and other ligands, J. Mol. Biol. 51: 303 (1970).PubMedCrossRefGoogle Scholar
  572. 560.
    Riggs, A. D., S. Bourgeois, and M. Cohn, The lac repressor-operator interaction. III. Kinetic studies, J. Mol. Biol. 53: 401 (1970).PubMedCrossRefGoogle Scholar
  573. 561.
    Riggs, A. D., G. Reiness, and G. Zubay, Purification and DNA-binding properties of the catabolite gene activator protein, Proc. Nat. Acad. Sci. U.S. 68: 1222 (1971).CrossRefGoogle Scholar
  574. 562.
    Ringertz, N. R., J. L. E. Ericsson, and O. Nilsson, Macronuclear chromatin structure in Euplotes, Exp. Cell Res. 48: 97 (1967).CrossRefGoogle Scholar
  575. 563.
    Ris, H., in Symposium on Fine Structure of Cell, 8th Congress of Cell Biology, Leiden, Holland, 1954, p. 121. Interscience, N.Y.Google Scholar
  576. 564.
    Ris, H., Chromosome structure, in “Symposium on the Chemical Basis of Heredity,” (W. D. McElroy and B. Glass, eds.), p. 23, The Johns Hopkins Press, Baltimore (1957).Google Scholar
  577. 565. Ris, H., Ultrastructure and molecular organization of genetic system, Canad. J. Genet. Cytol. 3: 95 (1961).Google Scholar
  578. 566.
    Ris, H., Fine structure of chromosomes, Proc. Roy. Soc. Lond. Ser. B.164: 246 (1966).Google Scholar
  579. 567.
    Ris, H., Ultrastructure of the animal chromosome, in “Regulation of Nucleic Acid and Protein Biosynthesis” (V. V. Koningsberger and L. Bosch eds.), p. 11, Elsevier Publ. Co., Amsterdam (1967).Google Scholar
  580. 568.
    Ris, H., and B. L. Chandler, The ultrastructure of genetic systems in prokaryotes and eukrayotes, Cold Spr. Harb. Symp. Quant. Biol. 28: 1 (1963).CrossRefGoogle Scholar
  581. 569.
    Ris, H., and D. F. Kubai, Chromosome structure, Ann. Rev. Genet. 4: 263 (1970).PubMedCrossRefGoogle Scholar
  582. 570.
    Robbins, E., and T. W. Borun, The cytoplasmic synthesis of histones in HeLa cells and its temporal relationship to DNA replication. Proc. Nat. Acad. Sci. 57: 409 (1967).PubMedCrossRefGoogle Scholar
  583. 571.
    Roberts, J. W., Termination factor for RNA synthesis, Nature 224: 1168 (1969).PubMedCrossRefGoogle Scholar
  584. 572.
    Roberts, J. W., Thee factor: termination and anti-termination in lambda, Cold Spr. Harb. Symp. Quant. Biol. 35: 121 (1970).CrossRefGoogle Scholar
  585. 573.
    Roberts, W. K., and Quinlivan, V. D., Purification and properties of nuclear and cytoplasmic “deoxyribonucleic acid-like” ribonucleic acid from Ehrlich ascites cells, Biochemistry 8: 288 (1969).PubMedCrossRefGoogle Scholar
  586. 574.
    Roeder, R. G., and W. J. Rutter, Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms, Nature 224: 234 (1969).PubMedCrossRefGoogle Scholar
  587. 575.
    Roeder, R. G., and W. J. Rutter, Specific nucleolar and nucleoplasmic RNA polymerases, Proc. Nat. Acad. Sci. U.S. 65: 675 (1970).CrossRefGoogle Scholar
  588. 576.
    Ruddon, R. W., and C. H. Rainey, Stimulation of nuclear protein synthesis in rat liver after phenobarbitol administration, Biochem. Biophys. Res. Commun. 40: 152 (1970).PubMedCrossRefGoogle Scholar
  589. 577.
    Rudkin, G. T., Structure and function of heterochromatin, in “Genetics Today,” Proc. XI Internat. Cong. Genetics, The Hague, Netherlands, Sept. 1963, p. 359.Google Scholar
  590. 578.
    Rudkin, G. T., The relative mutabilities of DNA in regions of the X chromosome of Drosophila melanogaster, Genetics 52: 665 (1965).Google Scholar
  591. 579.
    Rudkin, G. T., Non-replicating DNA in Drosophila, Genetics Suppl. 1 61: 227 (1969).Google Scholar
  592. 580.
    Russell, L. B., Mammalian X-chromosome action: Inactivation limited in spread and in region of origin, Science 140: 976 (1963).Google Scholar
  593. 581.
    Russell, L. B., and C. S. Montgomery, The use of X-autosome translocations in locating the X-chromosome inactivation center, Genetics 52: 470 (1965).Google Scholar
  594. 582.
    Russell, L. B., and C. S. Montgomery, Comparative studies on X-autosome translocations in the mouse. II. Inactivation of autosomal loci, segregation, and mapping of autosomal breakpoints in fiber T(X:1)’s, Genetics 64: 281 (1970).PubMedGoogle Scholar
  595. 583.
    Ryskov, A. P., and G. P. Georgiev, Polyphosphate groups at the 5’ends of nuclear dRNA fractions, FEBS Letters 8: 186 (1970).PubMedCrossRefGoogle Scholar
  596. 584.
    Sadasivaiah, R. S., R. Watkins, and T. Rajhathy, Somatic association of chromosomes in diploid and hexaploid Avena, Chromosoma 28: 468 (1969).Google Scholar
  597. 585.
    Sadgopal, A., and J. Bonner, Proteins of interphase and metaphase chromosomes compared, Biochim. Biophys. Acta 207: 227 (1970).PubMedCrossRefGoogle Scholar
  598. 586.
    Sadler, J. R., and A. Novick, The properties of repressor and the kinetics of its action, J. Mol. Biol. 12: 305 (1965).PubMedCrossRefGoogle Scholar
  599. 587.
    Salas, J., and H. Green, Proteins binding to DNA and their relation to growth in cultured mammalian cells, Nature New Biol. 229: 165 (1971).PubMedGoogle Scholar
  600. 588.
    Salzman, N. P., D. E. Moore, and J. Mendelsohn, Isolation and characterization of human metaphase chromosomes, Proc. Nat. Acad. Sci. U.S. 56: 1449 (1966).CrossRefGoogle Scholar
  601. 589.
    Sasaki, M., Observations on the modification in size and shape of chromosomes due to technical procedure, Chromosoma 11: 514 (1961).PubMedCrossRefGoogle Scholar
  602. 590.
    Saunders, G. F., S. Shirakawa, P. P. Saunders, F. Arrighi, and T. L. Hsu, Populations of repeated DNA sequences in the human genome, J. Mol. Biol. 63: 323 (1972).PubMedCrossRefGoogle Scholar
  603. 591.
    Scarano, E., M. laccarino, P. Grippo, and E. Parisi, The heterogeneity of thymine methyl group origin in DNA pyrimidine isotichs of developing sea urchin embryos, Proc. Nat. Acad. Sci. U.S. 57: 1394 (1967).CrossRefGoogle Scholar
  604. 592.
    Scharff, M. D., and E. Robbins, Polyribosome disaggregation during metaphase, Science 151: 992 (1966).PubMedCrossRefGoogle Scholar
  605. 593.
    Scherrer, K., and L. Marcaud, Messenger RNA in avian erythroblasts at the transcriptional and translational levels and the problem of regulation in animal cells, J. Cellul. Physiol. Suppl. 1, 72: 181 (1968).Google Scholar
  606. 594.
    Scherrer, K., G. Spohr, N. Granboulan, C. Morel, J. Grosclaude, and C. Chezzi, Nuclear and cytoplasmic messenger-like RNA and their relation to the active messenger RNA in polysomes of HeLa cells, Cold Spr. Harb. Symp. Quant. Biol. 35: 539 (1970).CrossRefGoogle Scholar
  607. 595.
    Schildkraut, C. L., and J. J. Maio, Studies on the intranuclear distribution and properties of mouse satellite DNA, Biochim. Biophys. Acta 161: 76 (1968).PubMedCrossRefGoogle Scholar
  608. 596.
    Schildkraut, C. L., and J. J. Maio, Fractions of HeLa DNA differing in their content of guanine + cytosine, J. Mol. Biol. 46: 305 (1969).PubMedCrossRefGoogle Scholar
  609. 597.
    Schmid, W., DNA replication patterns of human chromosomes, Cytogenetics 2: 175 (1963).PubMedCrossRefGoogle Scholar
  610. 598.
    Schmid, W., Heterochromatin in mammals, Arch. Julius Klaus-Stiftung Vererb. 42: 1 (1967).Google Scholar
  611. 599.
    Schmid, W., and M. F. Leppert, Rates of DNA synthesis in heterochromatic and euchromatic segments of the chromosome complements of two rodents, Cytogenetics 8: 125 (1969).PubMedCrossRefGoogle Scholar
  612. 600.
    Schmidt, D. A., A. J. Mazaitis, T. Kasai, and E. K. F. Bautz, Involvement of a phage T4 a factor and an anti-terminator protein in the transcription of early T4 genes in vivo, Nature 225: 1012 (1970).CrossRefGoogle Scholar
  613. 601.
    Schnedl, W., Analysis of the human karyotype using a reassociation technique, Chromosoma 34: 448 (1971).PubMedCrossRefGoogle Scholar
  614. 602.
    Schultz, J., Variegation in Drosophila and the inert chromosome regions, Proc. Nat. Acad. Sci. U.S. 22: 27 (1936).Google Scholar
  615. 603.
    Schultz, J., The nature of heterochromatin, Cold Spr. Harb. Symp. Quant. Biol. 12: 179 (1947).CrossRefGoogle Scholar
  616. 604.
    Schwarzacher, H. G., Die Ergebnisse elektronenmikroskopischer Untersuchungen an somatischen Chromosomen des Menschen, Humangenetik 10: 195 (1970).PubMedCrossRefGoogle Scholar
  617. 605.
    Schwarzacher, H. G., and W. Schnedl, Position of labelled chromatids in diplochromosomes of endoreduplicated cells after uptake of tritiated thymidine, Nature 209: 107 (1966).PubMedCrossRefGoogle Scholar
  618. 606.
    Schwarzacher, H. G., and W. Schnedl, Zur Ultrastruktur der Chromosomen des Menschen, Humangenetik 8: 75 (1969).PubMedCrossRefGoogle Scholar
  619. 606a.
    Seabright, M., A rapid banding technique for human chromosomes, Lancet 2: 971 (1971).PubMedCrossRefGoogle Scholar
  620. 607.
    Sekeris, C. E., W. Schmid, D. Gallwitz, and I. Lukacs, Protein synthesis in the cell nucleus. I. Amino acid incorporation into protein by the aggregate enzyme of Weiss, Life Sci. 5: 969 (1966).PubMedCrossRefGoogle Scholar
  621. 608.
    Sekeris, C. E., K. Sekeri, and D. Gallwitz, The methylation of the histones of rat liver nuclei in vitro, Hoppe-Seyler’s Z. Physiol. Chem. 348: 1660 (1967).CrossRefGoogle Scholar
  622. 609.
    Shaw, L. M. J., and R. C. C. Huang, A description of two procedures which avoid the use of extreme pH conditions for the resolution of components isolated from chromatins prepared from pig cerebellar and pituitary nuclei, Biochemistry 9: 4530 (1970).PubMedCrossRefGoogle Scholar
  623. 610.
    Shannon, M. P., T. C. Kaufman, and B. H. Judd, Lethality patterns of mutation in the zeste-white region of Drosophila melanogaster, (Abst) Genetics Suppl. 64: s58 (1970).Google Scholar
  624. 611.
    Shearer, R. W., DNA of rat hepatomas: Search for gene amplification, Biochem. Biophys. Res. Commun. 43: 1324 (1971).PubMedCrossRefGoogle Scholar
  625. 612.
    Shearer, R. W., and B. J. McCarthy, Evidence for ribonucleic acid molecules restricted to the nucleus, Biochemistry 6: 283 (1967).PubMedCrossRefGoogle Scholar
  626. 613.
    Shearer, R. W., and B. J. McCarthy, Related base sequences in the DNA of simple and complex organisms. IV. Evolutionary divergence of base sequence in mouse L-cell cytoplasmic and nucleus-restricted RNA, Biochem. Genetics 4: 395 (1970).CrossRefGoogle Scholar
  627. 614.
    Shelton, K. R., and Allfrey, V. G., Selective synthesis of a nuclear acidic protein in liver cells stimulated by cortisol, Nature 228: 132 (1970).PubMedCrossRefGoogle Scholar
  628. 615.
    Sherod, D., G. Johnson, and R. Chalkley, Phosphorylation of mouse ascites tumor cell lysine-rich histone, Biochemistry 9: 4611 (1970).Google Scholar
  629. 616.
    Shih, T. Y., and J. Bonner, Chromosomal RNA of calf thymus chromatin, Biochem. Biophys. Acta 182: 30 (1969).PubMedCrossRefGoogle Scholar
  630. 617.
    Shih, T. Y., and G. D. Fasman, Conformation of deoxyribonucleic acid in chromatin, J. Mol. Biol. 52: 125 (1970).PubMedCrossRefGoogle Scholar
  631. 618.
    Shiraishi, Y., The differential reactivity of human leukocyte chromosomes induced by low temperature, Japan. J. Genet. 45: 429 (1970).CrossRefGoogle Scholar
  632. 619.
    Siccardi, A. G., B. M. Shapiro, Y. Hirota, and F. Jacob, On the process of cellular division in Escherichia coli. IV. Altered protein composition and turnover of the membranes of thermosensitive mutants defective in chromosomal replication, J. Mol. Biol. 56: 475 (1971).PubMedCrossRefGoogle Scholar
  633. 620.
    Sieger, M., F. Pera, and H. G. Schwarzacher, Genetic inactivity of heterochromatin and heteropycnosis in Microtus agrestis, Chromosoma 29: 349 (1970).CrossRefGoogle Scholar
  634. 621.
    Simmell, E. B., and D. A. Karnofsky, Observations on the uptake of tritiated thymidine in the pronuclei of fertilized sand dollar embryos, J. Biophys. Biochem. Cytol. 10: 59 (1961).CrossRefGoogle Scholar
  635. 622.
    Sirlin, J. L., and R. G. Edwards, Timing of DNA synthesis in ovarian oocyte nuclei and pronuclei of the mouse, Exp. Cell Res. 18: 190 (1959).PubMedCrossRefGoogle Scholar
  636. 623.
    Sivolap, Y. M., and J. Bonner, Association of chromosomal RNA with repetitive DNA, Proc. Nat. Acad. Sci. U.S. 68: 387 (1971).CrossRefGoogle Scholar
  637. 624.
    Skinner, D. M., Deoxyribonucleic acid sequences complementary to ribosomal ribonucleic acid in a crustacean, Biochemistry 8: 1467 (1969).PubMedCrossRefGoogle Scholar
  638. 625.
    Slizynski, B. M., Ectopic pairing and the distribution of heterochromatin in the X-chromosome of salivary gland nuclei of Drosophila melanogaster, Proc. Roy. Soc. Edinburgh 62: 114 (1945).Google Scholar
  639. 626.
    Smart, J. E., Studies on the role of histones in the structure and function of chromatin, Ph. D. thesis, Calif. Inst. Tech., Pasadena (1970).Google Scholar
  640. 627.
    Smart, J. E., and J. Bonner, Selective dissociation of histones from chromatin by sodium deoxycholate, J. Mol. Biol. 58: 651 (1971).PubMedCrossRefGoogle Scholar
  641. 628.
    Smart, J. E., and J. Bonner, Studies on the role of histones in the structure of chromatin, J. Mol. Biol. 58: 661 (1971).PubMedCrossRefGoogle Scholar
  642. 629.
    Smart, J. E., and J. Bonner, Studies on the role of histones in relation to the template activity and precipitability of chromatin at physiological ionic strengths, J. Mol. Biol. 58: 675 (1971).PubMedCrossRefGoogle Scholar
  643. 630.
    Smith, B. J., Light satellite-band DNA in mouse cells infected with polyoma virus, J. Mol. Biol. 47: 101 (1970).PubMedCrossRefGoogle Scholar
  644. 631.
    Smith, S. G., Heterochromatin, colchicine and karyotype, Chromosoma 16: 162 (1965).PubMedCrossRefGoogle Scholar
  645. 632.
    Smith, E. L., R. J. Delange, and J. Bonner, Chemistry and biology of the histones, Physiol. Rev. 50: 159 (1970).Google Scholar
  646. 633.
    Smith, D. W., and P. C. Hanawalt, Properties of the growing point region in the bacterial chromosome, Biochim. Biophys. Acta 149: 519 (1967).PubMedCrossRefGoogle Scholar
  647. 634.
    Smith, G. R., and B. Magasanik, Nature and self-regulated synthesis of the repressor of the hut operons in Salmonella tyhimurium, Proc. Mat. Acad. Sci. U.S. 68: 1493 (1971).CrossRefGoogle Scholar
  648. 635.
    Snyder, R. W., and F. E. Young, Association between the chromosome and the cytoplasmic membrane in Bacillus subtilis, Biochem. Biophys. Res. Commun. 35: 354 (1969).CrossRefGoogle Scholar
  649. 636.
    Soeiro, R., H. C. Birnboim, and J. E. Darnell, Rapidly labeled HeLa cell nuclear RNA. II. Base composition and cellular localization of a heterogeneous RNA fraction, J. Mol. Biol. 19: 362 (1966).PubMedCrossRefGoogle Scholar
  650. 637.
    Soeiro, R., M. H. Baughan, J. R. Warner, and J. E. Darnell, The turnover of nuclear DNA-like RNA in HeLa cells, J. Cell Biol. 39: 112 (1968).Google Scholar
  651. 638.
    Soeiro, R., and J. E. Darnell, A comparison between heterogeneous nuclear RNA and polysomal messenger RNA in HeLa cells by RNA-DNA hybridization, J. Cell Biol. 44: 467 (1970).PubMedCrossRefGoogle Scholar
  652. 639.
    Solari, A. J., Structure of the chromatin in sea urchin sperm, Proc. Nat. Acad. Sci. U.S. 53: 503 (1965).CrossRefGoogle Scholar
  653. 640.
    Solari, A. J., The ultrastructure of chromatin fibers. I. The effect of spreading conditions, Exp. Cell Res. 53: 553 (1968).CrossRefGoogle Scholar
  654. 641.
    Solari, A. J., The ultrastructure of chromatin fibers. II. The ultrastructure of the loops from sea sperm chromatin, Exp. Cell Res. 53: 567 (1968).CrossRefGoogle Scholar
  655. 642.
    Solari, A. J., Experimental changes in the width of the chromatin fibers from chicken erythrocytes, Exp. Cell Res. 67: 161 (1971).PubMedCrossRefGoogle Scholar
  656. 643.
    Sonenshein, A. L., and R. Losick, RNA polymerase mutants blocked in sporulation, Nature 227: 906 (1970).PubMedCrossRefGoogle Scholar
  657. 644.
    Sorsa, M., Ultrastructure of the chromocentre heterochromatin in Drosophila melanogaster, Ann. Acad. Scient. Fenn. Ser. A IV, 146: 1 (1969).Google Scholar
  658. 645.
    Souleil, C., and J. Panijel, DNA replication in antigen stimulated guinea pig lymph node cells, Nature 227: 456 (1970).PubMedCrossRefGoogle Scholar
  659. 646.
    Southern, E. M., Base sequence and evolution of guinea pig a-satellite DNA, Nature 227: 794 (1970).PubMedCrossRefGoogle Scholar
  660. 647.
    Southern, E. M., Effects of sequence divergence on the reassociation properties of repetitive DNAs, Nature New Biol. 232: 82 (1971).PubMedGoogle Scholar
  661. 648.
    Sparrow, A. H., and H. J. Evans, Nuclear factors affecting radiosensitivity. I. The influence of nuclear size and structure, chromosome complement, and DNA content, Brookhaven Symp. Biol. 14: 76 (1961).PubMedGoogle Scholar
  662. 649.
    Spelsberg, T. C., and L. S. Hnilica, The effects of acidic proteins and RNA on the histone inhibition of the DNA-dependent RNA synthesis in vitro, Biochim. Biophys. Acta 195: 63 (1969).Google Scholar
  663. 650.
    Spelsberg, T. C., and L. S. Hnilica, Proteins of chromatin in template restriction. I. RNA synthesis in vitro, Biochim. Biophys. Acta 228: 202 (1971).Google Scholar
  664. 651.
    Spelsberg, T. C., and L. S. Hnilica, Proteins of chromatin in template restriction. II. Specificity of RNA synthesis, Biochim. Biophys. Acta 228: 212 (1971).PubMedCrossRefGoogle Scholar
  665. 652.
    Spelsberg, T. C., L. S. Hnilica, and A. T. Ansevin, Proteins of chromatin in template restriction. III. The macromolecules in specific restriction of the chromatin DNA, Biochim. Biophys. Acta 228: 550 (1971).PubMedCrossRefGoogle Scholar
  666. 653.
    Spirin, A. S., On “masked” forms of messenger RNA in early embryogenesis and in other differentiating systems, Current Topics Devel. Biol. 1:1 (1966).Google Scholar
  667. 654.
    Stambrook, P. J., and R. A. Flickinger, Changes in chromosomal DNA replication patterns in developing frog embryos, J. Exp. Zool. 174: 101 (1970).PubMedCrossRefGoogle Scholar
  668. 655.
    Stebbins, G. L., Chromosomal variation and evolution, Science 152: 1463 (1966).PubMedCrossRefGoogle Scholar
  669. 656.
    Stedman, E., and E. Stedman, Chromosomin, a protein constitutent of chromosomes, Nature 152k 267 (1943).CrossRefGoogle Scholar
  670. 657.
    Stedman, E., and E. Stedman, Cell specificity of histones, Nature 166: 780 (1950).PubMedCrossRefGoogle Scholar
  671. 658.
    Steele, W. J., and H. Busch, Studies on acidic nuclear proteins of the Walker tumor and liver, Canc. Res. 23: 1153 (1963).Google Scholar
  672. 659.
    Steele, W. J., and H. Busch, Studies on the composition of nuclear residual proteins from rat liver and Walker 254 carcinosarcoma, Exp. Cell Res. 33: 68 (1964).PubMedCrossRefGoogle Scholar
  673. 660.
    Steffensen, D. M., and D. E. Wimber, Localization of tRSA genes by in situ hybridization to Drosophila salivary chromosomes, J. Cell Biol. 47: 202a (1970).Google Scholar
  674. 661.
    Steggles, A. W., T. C. Spelsberg, S. R. Glasser, and B. W. O’Malley, Soluble complexes between steroid hormones and target-tissue receptors bound specifically to target-tissue chromatin, Proc. Nat. Acad. Sci. U.S. 68: 1479 (1971).CrossRefGoogle Scholar
  675. 662.
    Stein, G., and R. Baserga, Continued synthesis of non-histone chromosomal proteins during mitosis, Biochem. Biophys. Res. Commun. 41: 715 (1970).PubMedCrossRefGoogle Scholar
  676. 663.
    Stein, G., and R. Baserga, The synthesis of acidic nuclear proteins in the prereplicative phase of the isoproterenol-stimulated salivary gland, J. Biol. Chem. 245: 6097 (1970).PubMedGoogle Scholar
  677. 664.
    Stein, G., L. Pegoraro, T. Borun, and R. Baserga, The synthesis of nonhistone proteins during the cell cycle of HeLa S3 cells, J. Cell Biol. 47: 202a (1970).Google Scholar
  678. 665.
    Stellwagen, R. H., and R. D. Cole, Comparison of histones obtained from mammary gland at different stages of development and lactation, J. Biol. Chem. 243: 4456 (1968).PubMedGoogle Scholar
  679. 666.
    Stellwagen, R. H., and R. D. Cole, Chromosomal proteins, Ann. Rev. Biochem. 38: 951 (1969).PubMedCrossRefGoogle Scholar
  680. 667.
    Straus, N. A., Comparative DNA replication kinetics in amphibians, Proc. Nat. Acad. Sci. U.S. 68: 799 (1971).CrossRefGoogle Scholar
  681. 668.
    Stubblefield, E., DNA synthesis and chromosomal morphology of Chinese hamster cells cultured in media containing N-deacetyl-N-methylcolchicine (Colcemid), in “Cytogenetics of Cells in Culture” (J. R. C. Harris, ed.), Vol. 3, p. 223, Academic Press, New York (1964).Google Scholar
  682. 669.
    Stubblefield, E., and W. Wray, Architecture of the Chinese hamster metaphase chromosome, Chromosoma 32: 262 (1971).PubMedCrossRefGoogle Scholar
  683. 670.
    Sturtevant, A. H., Effects of unequal crossing over at the Bar locus in Drosophila, Genetics 10: 117 (1925).Google Scholar
  684. 671.
    Sueoka, N., K. S. Chiang, and J. R. Kates, Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardi. I. Isotopic transfer experiments with a strain producing eight zoospores, J. Mol. Biol. 25: 47 (1967).PubMedCrossRefGoogle Scholar
  685. 672.
    Sugiura, M., T. Okamoto, and M. Takanami, RNA polymerase factor and the selection of initiation site, Nature 225: 698 (1970).CrossRefGoogle Scholar
  686. 673.
    Sullivan, D. T., Molecular hybridization used to characterize the RNA synthesized by isolated bovine thymus nuclei, Proc. Nat. Acad. Sci. U.S. 59: 846 (1968).CrossRefGoogle Scholar
  687. 674.
    Summer, A. T., H. J. Evans, and R. A. Buckland, New technique for distinguishing between human chromosomes, Nature New Biol. 232: 31 (1971).Google Scholar
  688. 675.
    Summers, W. C., and R. B. Siegel, Control of template specificity of E. coli RNA polymerase by a phage-coded protein, Nature 223: 1111 (1969).PubMedCrossRefGoogle Scholar
  689. 676.
    Sussman, M., Model for quantitative control of mRNA translation in eukaryotes, Nature 225: 1245 (1970).PubMedCrossRefGoogle Scholar
  690. 677.
    Sutton, W. D., and M. McCallum, Mismatching and the reassociation rate of mouse satellite DNA, Nature New Biol. 232: 83 (1971).PubMedCrossRefGoogle Scholar
  691. 678.
    Takehisa, S., Heterochromatic segments in Viva revealed by treatment with HC1acetic acid, Nature 217: 567 (1968).CrossRefGoogle Scholar
  692. 679.
    Takehisa, S., Colchicine-induced supercontraction of chromosomes and hetero-chromatic segments in Vicia faba, Jap. J. Genetics 43: 149 (1968).CrossRefGoogle Scholar
  693. 680.
    Tanaka, R., H3-thymidine autoradiographic studies of the heteropycnosis, hetero-chromatin and euchromatin in Spiranthes sinensis, The Bot. Magazine, Tokyo 78: 50 (1965).Google Scholar
  694. 681.
    Tanaka, R., Speciation and karyotypes in Spiranthes sinensis, J. Sci. of Hiroshima Univ. Ser. B. 12: 165 (1969).Google Scholar
  695. 682.
    Tatuno, S., R. Tanaka, and M. Masubuchi, Early DNA synthesis in the X-chromosome of Pellia neesiana, Cytologia 35: 220 (1970).CrossRefGoogle Scholar
  696. 682a.
    Taylor, J. H., Sister chromatid exchanges in tritium labeled chromosomes, Genetics 43: 515 (1958).PubMedGoogle Scholar
  697. 683.
    Taylor, H. J., The regulation of DNA replication in chromosomes of higher cells, in “Nucleic Acid Metabolism Cell Differentiation and Cancer Growth” (E. V. Cowdry and S. Seno, eds.), p. 231, Permagon Press, New York (1969).Google Scholar
  698. 684.
    Taylor, J. H., P. Woods, and W. Hughes, The organization and duplication of chromosomes as revealed by autoradiographic studies using tritiumlabeled thymidine, Proc. Nat. Acad. Sci. U.S. 43: 122 (1957).CrossRefGoogle Scholar
  699. 685.
    Teng, C. S., C. T. Teng, and V. G. Allfrey, Studies of nuclear acidic proteins. Evidence for their phosphorylation, tissue specificity, selective binding to DNA, and stimulatory effects on transcription, J. Biol. Chem. 246: 3597 (1971).PubMedGoogle Scholar
  700. 686.
    Teng, C. S., and T. H. Hamilton, Role of chromatin in estrogen action in the uterus. II. Hormone-induced synthesis of nonhistone acidic proteins which restore histone-inhibited DNA-dependent RNA synthesis, Proc. Nat. Acad. Sci. U.S. 63: 465 (1969).CrossRefGoogle Scholar
  701. 687.
    Therkelsen, A. J., and L. U. Lamm, Difference in the frequency of sex chromatin positive cells in DNA-synthesizing and non-synthesizing human cells in tissue cultures, Exp. Cell Res. 41: 215 (1966).PubMedCrossRefGoogle Scholar
  702. 688.
    Therkelsen, A. J., and G. B. Petersen, Frequency of sex chromatin-positive cells in the logarithmic and post-logarithmic growth phases of human cells in tissue culture, Exp. Cell Res. 28: 588 (1962).PubMedCrossRefGoogle Scholar
  703. 689.
    Therkelsen, A. J., and G. B. Petersen, Variation in glucose-6-phosphate dehydrogenase in relation to the growth phase and frequency of sex chromatin positive cells in cultures of fibroblasts from normal human females and a 48-XXXY male, Exp. Cell Res. 48: 681 (1967).CrossRefGoogle Scholar
  704. 690.
    Thomas, C. A., Jr., The theory of the master gene, in “The Neurosciences, A Second Study Program” (F. O. Schmitt, ed.), p. 973, Rockefeller Univ. Press, New York (1970).Google Scholar
  705. 691.
    Thomas, C. A., Jr., B. A. Hamkalo, D. N. Misra, and C. S. Lee, Cyclization of eukaryotic deoxyribonucleic acid fragments, J. Mol. Biol. 51: 621 (1970).PubMedCrossRefGoogle Scholar
  706. 692.
    Tobia, A. M., C. L. Schildkraut, and J. J. Maio, Deoxyribonucleic acid replication in synchronized cultured mammalian cells. I. Time of synthesis of molecules of different average guanine + cytosine content, J. Mol. Biol. 54: 499 (1970).PubMedCrossRefGoogle Scholar
  707. 693.
    Tocchini-Valentini, G. P., and M. Crippa, Ribosomal RNA synthesis and RNA polymerase, Nature 228: 993 (1970).PubMedCrossRefGoogle Scholar
  708. 694.
    Tocchini-Valentini, G. P., Rifampicin sensitivity of the components of DNA-dependent RNA polymerase, Nature 222: 533 (1969).PubMedCrossRefGoogle Scholar
  709. 695.
    Toft, D., and J. Gorski, A receptor molecule for estrogens: Isolation from the rat uterus and preliminary characterization, Proc. Nat. Acad. Sci. U.S. 55: 1574 (1966).CrossRefGoogle Scholar
  710. 696.
    Tompkins, G. M., and S. Ohno, Effect of the androgen insensitivity mutation on a cytoplasmic receptor for dihydrotestosterone, Nature New Biol. 232: 106 (1971).Google Scholar
  711. 697.
    Travers, A. A., Bacteriophage sigma factor for RNA polymerase, Nature 223: 1107 (1969).PubMedCrossRefGoogle Scholar
  712. 698.
    Travers, A., RNA polymerase and T4 development, Cold Spr. Harb. Symp. Quant. Biol. 35: 241 (1970).CrossRefGoogle Scholar
  713. 699.
    Travers, A., Positive control of transcription by a bacteriophage sigma factor, Nature 225: 1009 (1970).PubMedCrossRefGoogle Scholar
  714. 700.
    Travers, A., Control of transcription in bacteria, Nature New Biol. 229: 69 (1971).PubMedGoogle Scholar
  715. 701.
    Travers, A., Nucleic acid structures reported at Arhus, Nature New Biol. 232: 226 (1971).Google Scholar
  716. 702.
    Travers, A., and R. R. Burgess, Cyclic re-use of the RNA polymerase sigma factor, Nature 222: 537 (1969).PubMedCrossRefGoogle Scholar
  717. 703.
    Travers, A., R. I. Kamen, and R. F. Schleif, Factor necessary for ribosomal RNA synthesis, Nature 228: 748 (1970).PubMedCrossRefGoogle Scholar
  718. 704.
    Tremblay, G. Y., M. J. Daniels, and M. Schaechter, Isolation of a cell membrane DNA-nasent RNA complex from bacteria, J. Mol. Biol. 40: 65 (1969).PubMedCrossRefGoogle Scholar
  719. 705.
    Trosko, J. E., and J. G. Brewen, Cytological observations on the strandedness of mammalian metaphase chromosomes, Cytologia 31: 208 (1966).PubMedCrossRefGoogle Scholar
  720. 706.
    Trosko, J. E., and S. Wolff, Strandedness of Vicia faba chromosomes as revealed by enzyme digestion studies, J. Cell Biol. 26: 125 (1965).PubMedCrossRefGoogle Scholar
  721. 707.
    Tuan, D. Y. H., and J. Bonner, Optical absorbance and optical rotatory dispersion studies on calf thymus nucleohistone, J. Mol. Biol. 45: 59 (1969).PubMedCrossRefGoogle Scholar
  722. 708.
    Udaka, S., Isolation of the arginine repressor in Escherichia coli, Nature 228: 336 (1970).Google Scholar
  723. 709.
    Van Winkle, Q., M. W. Renoll, J. S. Garvay, and A. F. Prebus, Electron microscopy of isolated chromosomes, Science 115: 711 (1952).PubMedCrossRefGoogle Scholar
  724. 710.
    Vendrely, R., The deoxyribonucleic acid content of the nucleus, in “The Nucleic Acids” (E. Chargaff and J. N. Davidson, eds.), Vol. 2, p. 156, Academic Press, New York (1955).Google Scholar
  725. 711.
    Vidali, G., E. L. Gershey, and V. G. Allfrey, Chemical studies of histone acetylation, J. Biol. Chem. 243: 6361 (1968).PubMedGoogle Scholar
  726. 712.
    Vogt, V., Breaks in DNA stimulate transcription by core RNA polymerase, Nature 223: 854 (1969).PubMedCrossRefGoogle Scholar
  727. 713.
    Vosa, C. G., Heterochromatin recognition with fluorochromes, Chromosoma 30: 366 (1970).CrossRefGoogle Scholar
  728. 714.
    Wagenaar, E. B., End-to-end chromosome attachments in mitotic interphase and their possible significance to meiotic chromosome pairing, Chromosoma 26: 410 (1969).CrossRefGoogle Scholar
  729. 715.
    Wagenaar, E. B., and R. S. Sadasivaiah, End-to-end, chain-like associations of paired pachytene chromosomes of Crepis capillaris, Canad. J. Genet. Cytol. 11: 403 (1969).Google Scholar
  730. 716.
    Wagner, T. E., Circular dichromism study of the f2a1 histone in the presence of polyvinylphosphate and DNA, Nature 227: 65 (1970).Google Scholar
  731. 717.
    Walker, P. M. B., How different are the DNAs from related animals?, Nature 219: 228 (1968).PubMedCrossRefGoogle Scholar
  732. 718.
    Walker, P. M. B., Origin of satellite DNA, Nature 229: 306 (1971).PubMedCrossRefGoogle Scholar
  733. 719.
    Walen, K. H., Spatial relationships in the replication of chromosomal DNA, Genetics 51: 915 (1965).PubMedGoogle Scholar
  734. 720.
    Wallace, H., J. Morray, and H. R. Langridge, Alternative model for gene amplification, Nature New Biol. 230: 201 (1971).Google Scholar
  735. 721.
    Walter, G., W. Zillig, P. Plam, and E. Fuchs, Initation of DNA-dependent RNA synthesis and the effect of heparin on RNA polymerase, Europ. J. Biochem. 3: 194 (1967).PubMedCrossRefGoogle Scholar
  736. 722.
    Walton, G. M., G. N. Gill, I. B. Abrass, and L. D. Garren, Phosphorylation of ribosome-associated protein by an adenosine 3’:5’-cyclic monophosphate-dependent protein kinase: location of the microsomal receptor and protein kinase, Proc. Nat. Acad. Sci. U.S. 68: 880 (1971).CrossRefGoogle Scholar
  737. 723.
    Wang, T. Y., Role of the residual nucleoprotein complex and acidic proteins of the cell nucleus in protein synthesis, Proc. Nat. Acad. Sci. U.S. 54: 800 (1965).CrossRefGoogle Scholar
  738. 724.
    Wang, T. Y., Solubilization and characterization of the residual proteins of the cell nucleus, J. Biol. Chem. 241: 2913 (1966).PubMedGoogle Scholar
  739. 725.
    Wang, T. Y., The isolation, properties and possible functions of chromatin acidic proteins, J. Biol. Chem. 242: 1220 (1967).PubMedGoogle Scholar
  740. 726.
    Wang, T. Y., Non-histone chromatin proteins from calf thymus and their role in DNA biosynthesis, Arch. Biochem. Biophys. 122: 629 (1967).CrossRefGoogle Scholar
  741. 727.
    Wang, T. Y., Isolation of a terminal DNA-nucleotidyl transferase from calf thymus non-histone chromatin proteins, Arch. Biochem. Biophys. 127: 235 (1968).PubMedCrossRefGoogle Scholar
  742. 728.
    Wang, T. Y., Restoration of histone-inhibited DNA-dependent RNA synthesis by acidic chromatin proteins, Exp. Cell Res. 53: 288 (1968).PubMedCrossRefGoogle Scholar
  743. 729.
    Wang, T. Y., Activation of transcription in vitro from chromatin by nonhistone proteins, Exp. Cell Res. 61: 455 (1970).PubMedCrossRefGoogle Scholar
  744. 730.
    Wang, J. C., Interaction between DNA and an Escherichia coli protein w., J. Mol. Biol. 55: 523 (1971).PubMedCrossRefGoogle Scholar
  745. 731.
    Wang, T. Y., and E. W. Johns, Study of the chromatin acidic proteins of rat liver: Heterogeneity and complex formation with histones, Arch. Biochem. Biophys. 124: 176 (1968).PubMedCrossRefGoogle Scholar
  746. 732.
    Wang, T. Y., D. T. Mayer, and L. E. Thomas, A lipoprotein of rat liver nuclei, Exp. Cell Res. 4: 102 (1953).CrossRefGoogle Scholar
  747. 733.
    Wang, T., and G. Patel, Amino acid incorporation of the nuclear residual acidic proteins, Life Sci. 6: 413 (1967).PubMedCrossRefGoogle Scholar
  748. 734.
    Warner, J. R., R. Soeiro, H. C. Birnboim, M. Girard, and J. E. Darnell, Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA, J. Mol. Biol. 19: 349 (1966).PubMedCrossRefGoogle Scholar
  749. 735.
    Waring, M., and R. J. Britten, Nucleotide sequence repetition: A rapidly reassociating fraction of mouse DNA, Science 154: 791 (1966).PubMedCrossRefGoogle Scholar
  750. 736.
    Watts, J. W., and H. Harris, Turnover of nucleic acids in a non-multiplying animal cell, Biochem. J. 72: 147 (1959).PubMedGoogle Scholar
  751. 737.
    Weiss, S. B., Enzymatic incorporation of ribonucleoside triphosphates into the interpolynucleotide linkages of ribonucleic acid, P.N.A.S. 46: 1020 (1960).PubMedCrossRefGoogle Scholar
  752. 738.
    Werner, R., Nature of DNA precursors, Nature New Biol. 233: 99 (1971). 738a. White, M. J. D., The heteropycnosis of sex chromosomes and its interpretation in terms of spiral structure, J. Genetics 40: 67 (1940).CrossRefGoogle Scholar
  753. 739.
    White, M. J. D., “Animal Cytology and Evolution,” Cambridge University Press, Cambridge (1954), p. 171.Google Scholar
  754. 740.
    White, M. J. D., Asymmetry of heteropycnosis in tetraploid cells of a grasshopper, Chromosoma 30: 51 (1970).PubMedCrossRefGoogle Scholar
  755. 741.
    White, M. J. D., and G. C. Webb, Origin and evolution of parthenogenetic reproduction in the grasshopper Moraba virgo (Eumastacidae: Morabinae), Austral. J. Zool. 16: 647 (1968).CrossRefGoogle Scholar
  756. 742.
    Whitehouse, H. L. K., “Towards an Understanding of the Mechanism of Heredity,” St. Martin’s Press, New York (1965).Google Scholar
  757. 743.
    Whitehouse, H. L. K., A cycloid model for the chromosome, J. Cell Sci. 2: 9 (1967).PubMedGoogle Scholar
  758. 744.
    Widnell, C. C., and J. R. Tata, Evidence for two DNA-dependent RNA polymerase activities in isolated rat liver nuclei, Biochim. Biophys. Acta 87: 531 (1964).PubMedGoogle Scholar
  759. 745.
    Wilcox, G., K. J. Clemetson, D. V. Santi, and E. Englesberg, Purification of the araC protein, Proc. Nat. Acad. Sci. 68: 2145, 1971.PubMedCrossRefGoogle Scholar
  760. 746.
    Wilkins, M. H. F., Physical studies of the molecular structure of deoxyribose nucleic acid and nucleoprotein, Cold Spr. Harb. Symp. Quant. Biol. 21: 75 (1956).CrossRefGoogle Scholar
  761. 747.
    Wilkins, M. H. F., and G. Zubay, X-ray diffraction study of the structure of nucleo-histone and nucleoprotamines, J. Mol. Biol. 7: 756 (1963).PubMedCrossRefGoogle Scholar
  762. 748.
    Wilkins, M. H. F., G. Zubay, and H. R. Wilson, X-ray diffraction studies of the molecular structure of nucleohistone and chromosomes, J. Mol. Biol. 1: 179 (1959).CrossRefGoogle Scholar
  763. 749.
    Williams, C. A., and C. H. Ockey, Distribution of DNA replicator sites in mammalian nuclei after different methods of cell synchronization, Exp. Cell Res. 63: 365 (1970).PubMedCrossRefGoogle Scholar
  764. 750.
    Williamson, R., M. Morrison, and J. Paul, DNA-RNA hybridization of 9S messenger RNA for mouse globin, Biochem. Biophys. Res. Commun. 40: 740 (1970).Google Scholar
  765. 751.
    Willson, C., D. Perrin, M. Cohn, R. Jacob, and J. Monod, Non-inducible mutants of the regulator gene in the “lactose” system of Escherichia coli, J. Mol. Biol. 8: 582 (1964).CrossRefGoogle Scholar
  766. 752.
    Wilson, E. B., “The Cell in Development and Heredity,” 3rd ed., Macmillan, New York (1925).Google Scholar
  767. 753.
    Wilson, G. B., and E. R. Boothroyd, Temperature-induced differential contraction in the somatic chromosomes of Trillium erectum L, Canad. J. Res. Sec. C, 22: 105 (1944).Google Scholar
  768. 754.
    Wimber, D. E., and D. M. Steffensen, Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridization, Scienze 170: 639 (1970).CrossRefGoogle Scholar
  769. 754a.
    Witschi, E., Sex chromatin and sex differentiation in human embryos, Science 126: 1288 (1957).PubMedCrossRefGoogle Scholar
  770. 755.
    Wolf, B. E., Structure and function of alpha-and beta-heterochromatin-results on Phryne cincta, The Nucleus (Calcutta) Seminar on Chromosomes, 145 (1968).Google Scholar
  771. 756.
    Wolf, U., G. Flinspach, R. Bohm, and S. Ohno, DNA-Reduplicationsmuster bei den Riesen-geschlechtschromosomen von Microtus agrestis, Chromosoma 16: 609 (1965).CrossRefGoogle Scholar
  772. 757.
    Wolfe, S. L., The fine structure of isolated chromosomes, J. Ultrastruc. Res. 12: 104 (1965).CrossRefGoogle Scholar
  773. 758.
    Wolfe, S. L., The effect of prefixation on the diameter of chromosome fibers isolated by the Langmuir through critical point method, J. Cell Biol. 37: 610 (1968).PubMedCrossRefGoogle Scholar
  774. 759.
    Wolfe, S. L., and J. N. Grim, The relationship of isolated chromosome fibers to the fibers of the embedded nucleus, J. Ultrastruc. Res. 19: 382 (1967).CrossRefGoogle Scholar
  775. 760.
    Wolfe, S. L., and B. John, The organization and ultrastructure of male meiotic chromosomes in Oncopeltus fasciatus, Chromosoma 17: 85 (1965).PubMedCrossRefGoogle Scholar
  776. 761.
    Wolfe, S. L., and G. M. Hewitt, The strandedness of meiotic chromosomes from Oncopeltus, J. Cell Biol. 31: 31 (1966).PubMedCrossRefGoogle Scholar
  777. 762.
    Wolfe, S. L., and P. G. Martin, The ultrastructure and strandedness of chromosomes from two species of Vicia, Exp. Cell Res. 50: 140 (1968).PubMedCrossRefGoogle Scholar
  778. 763.
    Wolff, S., Strandedness of chromosomes, Int. Rev. Cytol. 25: 279 (1969).PubMedCrossRefGoogle Scholar
  779. 764.
    Wolff, S., The splitting of human chromosomes into chromatids in the absence of either DNA or protein synthesis, Mut. Res. 8: 207 (1969).Google Scholar
  780. 765.
    Wolff, S., On the “tertiary” structure of chromosomes, Mut. Res. 10: 405 (1970).Google Scholar
  781. 766.
    Wolff, S., and H. E. Luippold, Chromosome splitting as revealed by combined x-ray and labeling experiments, Exp. Cell Res. 34: 548 (1964).PubMedCrossRefGoogle Scholar
  782. 767.
    Woodard, J., M. Gorovsky, and H. Swift, DNA content of a chromosome of Trillium erectum: Effect of cold treatment, Science 151: 215 (1966).PubMedCrossRefGoogle Scholar
  783. 768.
    Woodard, J., and H. Swift, The DNA content of cold-treated chromosomes, Exp. Cell Res. 34: 131 (1964).PubMedCrossRefGoogle Scholar
  784. 769.
    Wray, W., and E. Stubblefield, A new method for the rapid isolation of chromosomes, mitotic apparatus, or nuclei from mammalian fibroblasts at near neutral pH, Exp. Cell Res. 59: 469 (1970).PubMedCrossRefGoogle Scholar
  785. 770.
    Yamamoto, T., and M. S. Shahrabadi, Electron autoradiography of adenovirus infected cells, 28th Ann. Electr. Microscopic Society of America Meetings, abstracts p. 168 (1970).Google Scholar
  786. 771.
    Yarus, M., Recognition of nucleotide sequences, Ann. Rev. Biochem. 38: 841 (1969).PubMedCrossRefGoogle Scholar
  787. 772. Yasmineh, W. G., and J. J. Yunis, Localization of mouse satellite DNA in constitutive heterochromatin, Exp. Cell Res. 59: 69 (1970).Google Scholar
  788. 773. Yasmineh, W. G., and J. J. Yunis, Satellite DNA in calf heterochromatin, Exp. Cell Res. 64: 41 (1971).Google Scholar
  789. 774. Yoo, B. Y., Some observations on chromatin fibers of isolated pea nuclei, Canad. J. Bot. 46: 1111 (1968).Google Scholar
  790. 775.
    Yoshikawa-Fukada, M., T. Fukada, and Y. Kawade, Characterization of rapidly labeled ribonucleic acid of animal cells in culture, Biochem. Biophys. Acta 103: 383 (1965).PubMedCrossRefGoogle Scholar
  791. 776.
    Yoskikawa-Fukada, M., and Ebert, J. D., DNA synthesized by an insoluble chromatin fraction associated with the nuclear membrane of animal cells, Biochem. Biophys. Res. Commun. 43: 133 (1971).CrossRefGoogle Scholar
  792. 777.
    Yunis, J. J., and Yasmineh, W. G., Satellite DNA in constitutive heterochromatin of the guinea pig, Science 168: 263 (1970).PubMedCrossRefGoogle Scholar
  793. 778.
    Yunis, J. J., L. Roldan, and W. G. Yasmineh, Staining of repetitive DNA in metaphase chromosomes, Nature New Biol. 231: 532 (1971).CrossRefGoogle Scholar
  794. 779.
    Zakharov, A. F., and N. A. Egolina, Asynchrony of DNA replication and mitotic spiralization along heterochromatic portions of Chinese hamster chromosomes, Chromosoma 23: 365 (1968).PubMedCrossRefGoogle Scholar
  795. 780.
    Zakharov, A. F., J. V. Seleznev, V. A. Benjusch, L. I. Baranovskays, and V. S. Demintseva, Differentiation along human chromosomes in relation to chromosome identification, IVth Internat. Cong. Human Genetics, Paris, 1971 and Excerpta Med. Internat. Cong. Ser. 233: 193 (1971).Google Scholar
  796. 781.
    Zbarsky, I. B., and G. P. Georgiev, Cytological characteristics of protein and nucleoprotein fractions of cell nuclei, Biochim. Biophys. Acta 32: 301 (1959).PubMedCrossRefGoogle Scholar
  797. 782.
    Zbarsky, I. B., N. P. D. Dmitrieva, and L. P. Yermolayeva, On the structure of tumor cell nuclei, Exp. Cell Res. 27: 573 (1962).PubMedCrossRefGoogle Scholar
  798. 783.
    Zbarsky, I. B., K. A. Perevoschikova, L. N. Delektorshaya, and V. V. Delektorsky, Isolation and biochemical characteristics of the nuclear envelope, Nature 221: 257 (1969).PubMedCrossRefGoogle Scholar
  799. 784.
    Zillig, W., K. Zechel, D. Rabussary, M. Schachner, V. S. Sethi, P. Palm, A. Heil, and W. Seifert, On the role of different subunits of DNA-dependent RNA polymerase from E. coli in the transcription process, Cold Spr. Harb. Symp. Quant. Biol. 35: 37 (1970).CrossRefGoogle Scholar
  800. 785.
    Zirkin, B. R., The protein composition of nuclei during spermiogenesis in the Leopard frog, Rana pipiens, Chromosoma 31: 231 (1970).Google Scholar
  801. 786.
    Zubay, G., Nucleohistone structure and function, in “The Nucleohistones” (J. Bonner and P. Ts’o, eds.), p. 95, Holden-Day, Inc., San Francisco (1964).Google Scholar
  802. 787.
    Zubay, G., and P. Doty, The isolation and properties of deoxyribonucleo-protein particles containing single nucleic acid molecules, J. Mol. Biol. 1: 1 (1959).CrossRefGoogle Scholar
  803. 788.
    Zubay, G., D. Schwartz, and J. Beckwith, Mechanism of activation of catabolitesensitive genes: A positive control system, Proc. Nat. Acad. Sci. U.S. 66: 104 (1970).CrossRefGoogle Scholar
  804. 789.
    Zuffardi, O., L. Tiepolo, S. Dolfini, C. Barigozzi, and M. Fraccaro, Changes in the fluorescence patterns of translocated Y chromosome segments in Drosophilia melanogaster, Chromosoma 34: 274 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  1. 1.Department of Medical GeneticsCity of Hope National Medical CenterDuarteUSA

Personalised recommendations