Skip to main content

Model Studies of the Rheology of Blood in Microvessels

  • Chapter
Advances in Cardiovascular Engineering

Part of the book series: NATO ASI Series ((NSSA,volume 235))

  • 105 Accesses

Abstract

In the microcirculation, blood cannot be treated as a homogeneous fluid, but rather as a suspension. The individual cellular elements influence the hemodynamics. In this chapter, we shall study the behavior of red cells in microvessels. We will focus on the general features of cell-vessel interaction and their effect on the apparent viscosity of blood. Model experiments are used in these studies. In our models, the plasma is simulated by a silicone fluid, the red cells are simulated by gelatin pellets. With the model approach, apparent viscosity of blood in pulmonary capillaries is obtained. The Fahraeus-Lindqvist effect, Inversion of Fahraeus-Lindqvist effect, velocity distribution in microvessels, hematocrit in very narrow tubes, etc. are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbee JJ, Cokelet GR: The Fahraeus effect, Microvas. Res., 3: 1–21, 1971.

    Google Scholar 

  2. Chien S, Dellenback RJ, Usami S, Gregersen MI: Plasma trapping in hematocrit determination. Differences among animal species, Proc. Soc. Exptl. Biol. Med., 119: 1155–1158, 1965.

    Article  CAS  Google Scholar 

  3. Dientenfass L: Inversion of the Fahraeus Lindqvist phenomenon in blood flow through capillaries of diminishing radius, Nature, 215: 1099–1100, 1967.

    Article  Google Scholar 

  4. Fahraeus R: The suspension stability of the blood, Physiol. Rev., 9: 241–274, 1929.

    Google Scholar 

  5. Fahraeus R, Lindqvist T: The viscosity of the blood in narrow capillary tubes, Am. J. Physiol., 96: 562–568, 1931.

    CAS  Google Scholar 

  6. Fung YC: Blood flow in the capillary bed, J. Biomech., 2: 353–373, 1969.

    Article  CAS  PubMed  Google Scholar 

  7. Fung YC, Sobin SS: Theory of sheet flow in the lung alveoli, J. Appl. Physiol., 26: 472–488, 1969.

    CAS  PubMed  Google Scholar 

  8. Fung YC, Sobin SS: Pulmonary alveolar blood flow, Circ. Res., 30: 470–490, 1972.

    CAS  Google Scholar 

  9. Fung YC: Stochastic flow in capillary blood vessels, Microvascular Res., 5: 34–38, 1973.

    Article  CAS  Google Scholar 

  10. Fung YC: Interaction of blood cells with vessel walls in microcirculation, Thrombosis Research, 8 (Suppl. II): 315–327, 1976.

    Article  CAS  PubMed  Google Scholar 

  11. Fung YC: Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1981.

    Google Scholar 

  12. Fung YC: Biodynamics: Circulation, Springer-Verlag, New York, 1984.

    Google Scholar 

  13. Fung YC: Biomechanics: Motion, Flow, Stress, and Growth, Springer-Verlag, New York, 1990.

    Google Scholar 

  14. Gaehtgens, P: Flow of blood through narrow capillaries: Rheological mechanisms determining capillary hematocrit and apparent viscosity, Biorheology J., 17: 183–189, 1980.

    Google Scholar 

  15. Goldsmith HL: Deformation of human red cells in tube flow, Biorheology, 7: 235–242, 1971.

    CAS  PubMed  Google Scholar 

  16. Gregersen MI, Bryant CA, Hammerle WE, Usami S, Chien S: Flow characteristics of human erythrocytes through polycarbonate sieves, Science, 157: 825–827, 1967.

    Article  CAS  PubMed  Google Scholar 

  17. Lee JS: Slow viscous flow in a lung alveoli model: J. Biomech., 2: 187–198, 1969.

    Article  CAS  PubMed  Google Scholar 

  18. Lee JS, Fung YC: Modeling experiments of a single red blood cell moving in a capillary blood vessel, Microvascular Res., 1: 221–243, 1969.

    Article  CAS  Google Scholar 

  19. Lew HS, Fung YC: Plug effect of erythrocytes in capillary blood vessels, Biophys. J., 10: 80–99, 1970.

    Article  CAS  PubMed  Google Scholar 

  20. Lipowsky HH, Usami S, Chien S: In vivo measurement of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat, Microvascular Res., 19: 297–319, 1980.

    Article  CAS  Google Scholar 

  21. Schmid-Schoenbein GW, Skalak R, Usami S, Chien S: Cell distribution in capillary networks, Microvascular Res., 19: 18–44, 1980.

    Article  Google Scholar 

  22. Sheshadri V, Sutera SP: Concentration changes of suspensions of rigid spheres flowing through tubes, J. Colloid Interface Sci., 27: 101–110, 1968.

    Article  Google Scholar 

  23. Skalak RA, Tozeren A, Zarda RP, Chien S: Strain energy function of red blood cell membrane, Biophys. J., 13: 245–246, 1973.

    Article  CAS  PubMed  Google Scholar 

  24. Sobin SS, Tremer HM, Fung YC: Morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat, Circ. Res., 26: 397–414, 1970.

    CAS  Google Scholar 

  25. Sobin SS, Fung YC, Tremer H, Rosenquist TH: Elasticity of the pulmonary intervalveolar microvascular sheet in the cat, Circ. Res., 30: 440–450, 1972.

    CAS  Google Scholar 

  26. Sutera SR, Seshadri V, Croce PA, Hochmuth RM: Capillary blood flow II. Deformable model cells in tube flow, Microvascular Res., 2: 420–433, 1970.

    Article  CAS  Google Scholar 

  27. Svanes J, Zweifach RW: Variations in small blood vessel hematocrits produced in hypothermic rats by micro-occlusion, Microvasc. Res., 1: 210–221, 1969.

    Google Scholar 

  28. Yen RT, Fung YC: Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli, J. Appl. Physiol, 35: 510–517, 1973.

    CAS  PubMed  Google Scholar 

  29. Yen RT, Fung YC: Inversion of Fahraeus effect and effect of mainstream flow on capillary hematocrit, J. Appl. Physiol., 42 (4): 578–586, 1977.

    CAS  PubMed  Google Scholar 

  30. Yen RT, Fung YC: Effect of velocity distribution on red cell distribution in capillary blood vessels, Am. J. Physiol., 235 (2): H251 - H257, 1978.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yen, M.R.T. (1992). Model Studies of the Rheology of Blood in Microvessels. In: Hwang, N.H.C., Turitto, V.T., Yen, M.R.T. (eds) Advances in Cardiovascular Engineering. NATO ASI Series, vol 235. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4421-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4421-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3228-0

  • Online ISBN: 978-1-4757-4421-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics