Concentration and Velocity Profiles of Blood Cells in the Microcirculation

  • Robert S. Reneman
  • Bea Woldhuis
  • Mirjam G. A. oude Egbrink
  • Dick W. Slaaf
  • Geert Jan Tangelder
Part of the NATO ASI Series book series (NSSA, volume 235)


Although this chapter basically deals with the concentration and velocity profiles of blood cells in general, most of the data presented concern blood platelets. These small blood cells, with a density close to that of blood plasma, can be nicely used as natural markers of flow by fluorescently labeling them in vivo allowing their localization and the assessment of blood flow velocities at various sites in microvessels. Because of their role in hemostasis, thrombosis, and maintaining endothelial cell integrity, blood platelets can be expected to come in contact with the vessel wall. Recent in vivo studies have shown that blood platelets indeed do come close to the wall in arterioles(1,2), but less so in venules. In the latter microvessels a relatively large zone near the vessel wall from which blood platelets seem to be expelled, has to be appreciated(2).


Velocity Profile Wall Shear Stress Apparent Viscosity Blood Platelet Wall Shear Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tangelder GJ, Teirlinck HC, Slaaf DW, Reneman RS: Distribution of blood platelets flowing in arterioles, Am. J. Physiol., 248: H318, 1985.PubMedGoogle Scholar
  2. 2.
    Woldhuis B, Tangelder GJ, Slaaf DW, Reneman RS: Concentration profile of blood platelets differs in arterioles and venules, Am. J. Physiol., 262: H1217, 1992.PubMedGoogle Scholar
  3. 3.
    Turitto VT: Blood viscosity, mass transport, and thrombogenesis, In: Progress in Hemostasis and Thrombosis 6 (Ed., Speat TH ), Grune and Stratton, New York, 1982.Google Scholar
  4. 4.
    Tangelder GJ, Slaaf DW, Muijtjens AMM, Arts T, oude Egbrink MGA, Reneman RS: Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery, Circ. Res., 59: 505, 1986.Google Scholar
  5. 5.
    Tangelder GJ, Slaaf DW, Arts T, Reneman RS: Wall shear rate in arterioles in vivo: least estimates from platelet velocity profiles, Am. J. Physiol., 254: H1059, 1988.PubMedGoogle Scholar
  6. 6.
    Lipowsky HH, Kovalcheck S, Zweifach BW: The distribution of blood rheological parameters in the microvasculature of cat mesentery, Circ. Res., 43: 738, 1978.Google Scholar
  7. 7.
    Lipowsky HH, Usami S, Chien S: In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat, Microvasc. Res., 19: 297, 1980.Google Scholar
  8. 8.
    Tangelder GJ, Slaaf DW, Reneman RS: Fluorescent labeling of blood platelets in vivo, Thromb. Res., 28: 803, 1982.Google Scholar
  9. 9.
    Tangelder GJ, Slaaf DW, Teirlinck HC, Alewijnse R, Reneman RS: Localization within a thin optical section of fluorescent blood platelets flowing in a microvessel, Microvasc. Res., 23: 214, 1982.Google Scholar
  10. 10.
    Tangelder GJ, Arfors K-E: Inhibition of leukocyte rolling in venules by protamine and sulfated polysaccharides, Blood, 77: 1565, 1991.PubMedGoogle Scholar
  11. 11.
    Goldsmith HL: The flow of model particles and blood cells and its relation to thrombogenesis, In: Progress in Hemostasis and Thrombosis 1 (Ed., Speat TH ), Grune and Stratton, New York, 1972.Google Scholar
  12. 12.
    Goldsmith HL, Marlow JC: Flow behavior of erythrocytes, II, Particle motions in concentrated suspensions of ghost cells, J. Colloid. Int. Sci., 71: 383, 1979.CrossRefGoogle Scholar
  13. 13.
    Baker M, Wayland H: On-line volume flow rate and velocity profile measurement for blood in microvessels, Microvasc. Res., 7: 131, 1974.Google Scholar
  14. 14.
    Bugliarello G, Hayden JW: Detailed characteristics of the flow of blood in vitro, Trans. Soc. Rheology, 7: 209, 1963.CrossRefGoogle Scholar
  15. 15.
    Bugliarello G, Sevilla J: Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes, Biorheology, 7: 85, 1970.PubMedGoogle Scholar
  16. 16.
    Slaaf DW, Rood JPSM, Tangelder GJ, Jeurens TJM, Alewijnse R, Reneman RS, Arts T: A bidirectional optical (BDO) three-stage prism grating system for online measurement of red blood cell velocity in microvessels, Microvasc. Res., 22: 110, 1981.Google Scholar
  17. 17.
    Frojmovic MM, Panjwani R: Geometry of normal mammalian platelets by quantitative microscopic studies, Biophys. J., 16: 1071, 1976.PubMedCrossRefGoogle Scholar
  18. 18.
    Teirlinck HC, Tangelder GJ, Slaaf DW, Muijtjens AMM, Arts T, Reneman RS: Orientation and diameter distribution of rabbit blood platelets flowing in small arterioles, Biorheology, 21: 317, 1984.PubMedGoogle Scholar
  19. 19.
    Caro CG, Pedley TJ, Schroter RC, Seed WA: The Mechanisms of the Circulation, Oxford University Press, Oxford, 1978.Google Scholar
  20. 20.
    Roevros JMJG: Analogue processing of CW Doppler flowmeter signals to determine average frequency shift momentaneously without the use of a wave analyser, In: Cardiovascular Applications of Ultrasound (Ed., Reneman RS ), North-Holland Publishing Company, Amsterdam, 1974.Google Scholar
  21. 21.
    Palmer AA: Platelet and leukocyte skimming, Bibl. Anat., 9: 300, 1967.Google Scholar
  22. 22.
    Turitto VT, Baumgartner HR: Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells, Microvasc. Res., 9: 335, 1975.Google Scholar
  23. 23.
    Eckstein EC, Tilles AW, Millero FJ: Conditions for the occurrence of large near-wall excesses of small particles during blood flow, Microvasc. Res., 36: 31, 1988.Google Scholar
  24. 24.
    Tilles AW, Eckstein EC: The near-wall excess of platelet-sized particles in blood flow: Its dependence on hematocrit and wall shear rate, Microvasc. Res., 33: 211, 1987.Google Scholar
  25. 25.
    Atherton A, Born GVR: Quantitative investigations of the adhesiveness of circulating polymorphonuclear leukocytes to blood vessel walls, J. Physiol., 222: 447, 1972.PubMedGoogle Scholar
  26. 26.
    House SD, Lipowsky HH: Leukocyte-endothelium adhesion: microhemodynamics in the mesentery of the cat, Microvasc. Res., 34: 363, 1987.Google Scholar
  27. 27.
    Oude Egbrink MGA, Tangelder GJ, Slaaf DW, Reneman RS: Thromboembolic reaction following wall puncture in arterioles and venules of the rabbit mesentery, Thromb. Haemost., 59: 23, 1988.Google Scholar
  28. 28.
    Oude Egbrink MGA, Tangelder GJ, Slaaf DW, Reneman RS: Effect of blood gases and pH on thromboembolic reactions in rabbit mesenteric microvessels, Eur. J. Physiol., 414: 324, 1989.CrossRefGoogle Scholar
  29. 29.
    Pohl U, Holtz J, Busse R, Bassenge E: Crucial role of endothelium in the vasodilator response to increased flow in vivo, Hypertension, 8: 37, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Oude Egbrink MGA, Tangelder GJ, Slaaf DW, Reneman RS: Influence of platelet-vessel wall interactions on leukocyte rolling in vivo, Circ. Res., 70: 355, 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Robert S. Reneman
    • 1
  • Bea Woldhuis
    • 1
  • Mirjam G. A. oude Egbrink
    • 1
  • Dick W. Slaaf
    • 1
  • Geert Jan Tangelder
    • 1
  1. 1.Departments of Physiology and Biophysics Cardiovascular Research Institute MaastrichtUniversity of LimburgMaastrichtThe Netherlands

Personalised recommendations