Vascular Grafts: Clinical and Hemodynamic Applications

  • Travis J. Phifer
  • Ned H. C. Hwang
Part of the NATO ASI Series book series (NSSA, volume 235)


Early experiments in the development of vascular grafts began with simple tubes of impervious nonbiologic material placed into the arterial circulation of animals. These experiments were largely unsuccessful, however, with high rates of thromboembolism and hemorrhage related to lack of coverage of the graft lumen by a biologic surface and failure of incorporation of the synthetic materials into the perivascular tissues. In 1906, Carrel reported experiments with homologous and heterologous artery and vein grafts placed in the canine arterial circulation(1). In that same year, Goyanes replaced a segment of human artery with autologous vein(2). Despite this early work with vascular grafts, treatment of most arterial injuries as late as World War II was by ligation(3). In 1952, however, Dubost made a landmark contribution by repair of an aortic aneurysm with an arterial homograft(4). The subsequent introduction of Vinyon-N as a synthetic graft materials(5) ushered in a new era of elective arterial reconstruction. Repair of arterial injuries, also, soon became commonplace.


Wall Shear Stress Vein Graft Intimal Hyperplasia Vascular Graft Arterial Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carrel A, Guthrie CG: Uniterminal and biterminal venous transplantations, Surg. Gynecol. Obstet., 2: 266, 1906.Google Scholar
  2. 2.
    Goyanes DJ: Substitution plastica de las arterias por las venas, o arterioplastia venosa, aplicada, como nuevo metodo, al tratamiento de los aneurismas, El Siglo Medico, September 1:346, September, 8: 561, 1906.Google Scholar
  3. 3.
    Debakey ME, Simeone FA: Battle injuries of the arteries in World War II, Ann. Surg., 123: 534, 1946.CrossRefGoogle Scholar
  4. 4.
    Dubost C, Allary M, Oeconomos N: Resection of an aneurysm of the abdominal aorta: Reestablishment of the continuity by a preserved human arterial graft, with results after five months, Arch. Surg., 64: 405, 1952.Google Scholar
  5. 5.
    Voorhees AB Jr, Jaretzki A III, Blakemore AH: The use of tubes constructed from Vinyon “N” cloth in bridging arterial defects, Ann Surg., 135: 332, 1952.PubMedCrossRefGoogle Scholar
  6. 6.
    Chang BB, Paty PSK, Shah DM, et al: The lesser saphenous vein: An underappreciated source of autogenous vein, J. Vasc. Surg., 15: 152, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Vellar IDA, Doyle JC: The use of cephalic and basilic veins as peripheral vascular grafts, Aust. NZ J. Surg., 40: 52, 1970.Google Scholar
  8. 8.
    Cambria RP, Megerman J, Brewster DC, et al: The evolution of morphologic and biomechanical changes in reversed and in situ vein grafts, Ann. Surg., 205: 167, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Lye CR, Sumner DS, Strandness DE, The transcutaneous measurement of the elastic properties of the human saphenous vein femoropopliteal bypass graft, Surg. Gynecol. Obstet., 141: 891, 1975.Google Scholar
  10. 10.
    Leather RP, Shah DM, Karmody AM, Infrapopoiteal arterial bypass for limb salvage: Increased patency and utilization of the saphenous venin used in situ, Surgery, 190: 1000, 1981.Google Scholar
  11. 11.
    Taylor LM, Phinney ES, Porter JM: Present status of reversed vein bypass for lower extremity revascularization, J. Vasc. Surg., 3: 288, 1986.PubMedGoogle Scholar
  12. 12.
    Batson RC, Sottiurai VS: Nonreversed and in situ vein grafts: Clinical and experimental observations, Ann. Surg., 201: 771, 1985.PubMedCrossRefGoogle Scholar
  13. 13.
    Wyatt AP, Rothnie NG, Taylor GW: The vascularization of vein grafts, Br. J. Surg., 51: 378, 1964.PubMedCrossRefGoogle Scholar
  14. 14.
    McCann RL, Hagen PO, Fuchs JCF: Aspirin and dipyridamole decrease intimai hyperplasia in experimental vein grafts, Ann. Surg., 191: 238, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Haudenschild C, Gould KE, Quist WC, et al: Protection of endothelium in vessel segments excised for grafting, Circulation, 64 (Suppl II): 101, 1981.Google Scholar
  16. 16.
    Abbott WM, Wieland S, Austen WG: Structural changes during preparation of autogenous venous grafts, Surgery, 76: 1031, 1974.PubMedGoogle Scholar
  17. 17.
    Gundry SR, Jones M, Ishihara T, et al: Optimal preparation techniques for human saphenous vein grafts, Surgery, 88: 785, 1980.PubMedGoogle Scholar
  18. 18.
    Cambria RP, Megerman J, Abbott WM: Endothelial preservation in reversed and in situ autogenous vein grafts: A quantitative, experimental study, Ann. Surg., 202: 50, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Bonchek LI: Prevention of endothelial damage during preparation of saphenous veins for bypass grafting, J. Thorac. Cardiovasc. Surg., 79: 911, 1989.Google Scholar
  20. 20.
    Kuruz M, Christman EW, Derrick JR, et al: Use of cold cardioplegia solution for vein graft distention and preservation: A light and scanning electron microscopic study, Ann Thorac. Surg., 32: 68, 1981.CrossRefGoogle Scholar
  21. 21.
    Malone JM, Kischer CW, Moore WS: Changes in venous endothelial fibrinolytic activity and histology with in vitro distention and arterial implantation, Am. J. Surg., 142: 178, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Baumann FG, Catinella FP, Cunningham JN, et al: Vein contraction and smooth muscle cell extensions as causes of endothelial damage during graft preparation, Ann. Surg., 194: 199, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Brody WR, Angell WW, Kosek JC: Histologic fate of the venous coronary artery bypass in dogs, Am. J. Pathol., 66: 111, 1972.PubMedGoogle Scholar
  24. 24.
    Bandyk DF, Kaebrick HW, Stewart GW, et al: Durability of the in situ saphenous vein arterial bypass: A comparison of primary and secondary patency, J. Vasc. Surg., 5: 256, 1987.PubMedGoogle Scholar
  25. 25.
    Batson RC, Sottiurai VS: Nonreversed and in situ vein grafts: Clinical and experimental observations, Ann. Surg., 201: 771, 1985.PubMedCrossRefGoogle Scholar
  26. 26.
    Cambria RP, Megerman J, Brewster DC, et al: The evolution of morphologic and biomechanical changes in reversed and in situ vein grafts, Ann. Surg., 205: 167, 1987.PubMedCrossRefGoogle Scholar
  27. 27.
    Leather RP, Shah DM, Karmody AM: Infrapopliteal arterial bypass for limb salvage: Increased patency and utilization of saphenous vein used “in situ, ” Surgery, 90: 1000, 1981.PubMedGoogle Scholar
  28. 28.
    Leather RP, Shah DM, Buchbinder D, et al: Further experience with the saphenous vein used in situ for arterial bypass, Am. J. Surg., 142: 506, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Veith FJ, Moss CM, Sprayregen S, et al: Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity, Surgery, 85: 253, 1979.PubMedGoogle Scholar
  30. 30.
    Harris RW, Andros G, Salles-Cunha SX, et al: Totally autogenous venovenous composite bypass grafts, 121: 1128, 1986.Google Scholar
  31. 31.
    Graham JW, Lusby RI: Infrapopliteal bypass grafting: use of upper limb vein alone and in autogenous composite grafts, Surgery, 91: 646, 1982.PubMedGoogle Scholar
  32. 32.
    Taylor LM Jr, Edwards JM, Brant B, et al: Autogenous reversed vein bypass for lower extremity ischemia in patients with absent or inadequate greater saphenous vein, Am. J. Surg., 153: 505, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Snyder SO Jr, Gregory RT, Wheeler JR, et al: Composite grafts utilizing polytetrafluorethylene-autogenous tissue for lower extremity arterial reconstructions, Surgery, 90: 881, 1981.PubMedGoogle Scholar
  34. 34.
    Wheeler JR, Gregory RT, Snyder SO Jr, et al: Gore-Tex autogenous vein composite grafts for tibial reconstruction, J. Vasc. Surg., 1: 914, 1984.PubMedGoogle Scholar
  35. 35.
    Hall RG, Coupland GAE, Lane R, et al: Vein, Gore-Tex or a composite graft for femoropopliteal bypass, Surg. Gynecol. Obstet., 161: 308, 1985.Google Scholar
  36. 36.
    Scribner RG, Beare JP, Harris EJ, et al: Polytetrafluoroethylene vein composite grafts across the knee, Surg. Gynecol. Obstet., 157: 237, 1983.Google Scholar
  37. 37.
    Verta MJ: Composite sequential bypasses to the ankle and beyond for limb salvage, J. Vasc. Surg., 1: 381, 1984.PubMedGoogle Scholar
  38. 38.
    Glovicski P, Pairolero PC, Cherry KJ, et al: Reconstruction of the vena cava and its primary tributaries: A preliminary report, J. Vasc. Surg., 11: 373, 1990.Google Scholar
  39. 39.
    Stoney RJ, Wylie EJ: Arterial autografts, Surgery, 67: 18, 1970.PubMedGoogle Scholar
  40. 40.
    Lye CR, String ST, Wylie EJ, et al: Aortorenal arterial autografts, Arch. Surg., 110: 1321, 1975.Google Scholar
  41. 41.
    Stoney RJ, DeLuccia N, Ehrenfeld WK, et al: Aortorenal arterial autografts, Arch. Surg., 116: 1416, 1981.Google Scholar
  42. 42.
    Ehrenfeld WK, Stoney RJ, Wylie ET: Autogenous arterial grafts, In: Biologic and Synthetic Vascular Prostheses (Eds. Stanley JC, et al ), Grune and Stratton, New York, 1982.Google Scholar
  43. 43.
    Abbott WM, Megerman J, Hasson JE, et al: Effect of compliance mismatch on vascular graft patency, J. Vasc. Surg., 5: 376, 1987.PubMedGoogle Scholar
  44. 44.
    Qvarfordt PG, Reilly LM, Ehrenfeld WK, et al: Surgical management of vascular graft infections-local treatment, graft excision, and methods of revascularization, In: Complications in Vascular Surgery (Eds. Bernhard VM, Towne JB ), Grune and Stratton, New York, 1985.Google Scholar
  45. 45.
    Dardik H, Hessler K, Ibrahim IM, et al: Arteriovenous fistulas: Preliminary clinical experience employing glutaraldehyde tanned human umbilical cord vein, Trans. Am. Soc. Artif. Int. Organs., 4: 64, 1981.Google Scholar
  46. 46.
    Dardik H, Baier RE, Weinberg S, et al: Morphologic and biophysical assessment of long-term human umbilical cord vein implants employed as vascular conduits, Surg. Gynecol. Obstet., 154: 17, 1982.Google Scholar
  47. 47.
    Dardik H: Modified human umbilical vein allograft, In: Vascular Surgery (Ed. Rutherford RB ), WB Saunders, Philadelphia, 1989.Google Scholar
  48. 48.
    Dardik H, Ibrahim IM, Sussman B, et al: Biodegradation and aneurysm formation in umbilical vein grafts: observation and a realistic strategy, Ann. Surg., 199: 61, 1984.PubMedCrossRefGoogle Scholar
  49. 49.
    Dardik H, Miller N, Dardik A, et al: A decade of experience with the glutaraldehyde-tanned human umbilical cord vein graft for revascularization of the lower limb, J. Vasc. Surg., 7: 336, 1988.PubMedGoogle Scholar
  50. 50.
    Brockbank KGM, Donovan TJ, Rub ST, et al: Functional analysis of cryopreserved veins, J. Vasc. Surg., 11: 94, 1990.PubMedGoogle Scholar
  51. 51.
    Elmore JR, Glovicski P, Brockbank KGM, et al: Cryopreservation affects endothelial and smooth muscle function of canine autogenous saphenous vein grafts, J. Vasc. Surg., 13: 584, 1991.PubMedCrossRefGoogle Scholar
  52. 52.
    Noishiki Y.Google Scholar
  53. 53.
    Phifer TJ, Gerlock AT, Grafton WD, et al: Valvular xenografts in the inferior vena cava: An animal study, Am. J. Surg., 157: 588, 1989.PubMedCrossRefGoogle Scholar
  54. 54.
    Scales JT: Tissue reactions to synthetic materials, Proc. R. Soc. Med., 46: 647, 1953.PubMedGoogle Scholar
  55. 55.
    Reichle FA: Criteria for evaluation of new arterial prostheses by comparing vein with Dacron femoropopliteal bypasses, Surg. Gynecol. Obstet., 146: 714, 1978.Google Scholar
  56. 56.
    Stephen M, Lowenthal J, Little JM, et al: Autogenous veins and velour Dacron in femoropopliteal arterial bypass, Surgery, 81: 314, 1977.PubMedGoogle Scholar
  57. 57.
    Veith FJ, Gupta SK, Ascer E, et al: Six year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions, J. Vasc. Surg., 3: 104, 1986.PubMedGoogle Scholar
  58. 58.
    Shah PM, Ito K, Clauss RH, et al: Expanded microporous polytetrafluoroethylene (PTFE) grafts in contaminated wounds: Experimental and clinical study, J. Trauma, 23: 1030, 1983.PubMedCrossRefGoogle Scholar
  59. 59.
    Stone KS, Walshaw R, Sugiyama GT, et al: Polytetrafluoroethylene versus autogenous vein grafts for vascular reconstruction in contaminated wounds, Curr. Surg., 41: 267, 1984.PubMedGoogle Scholar
  60. 60.
    Shah DM, Leather RP, Corson JD, et al: Polytetrafluoroethylene grafts in the rapid reconstruction of acute contaminated peripheral vascular injuries, Am. J. Surg., 148: 229, 1984.PubMedCrossRefGoogle Scholar
  61. 61.
    Feliciano DV, Mattox KL, Graham JM, et al: Five-year experience with PTFE grafts in vascular wounds, J. Trauma, 25: 71, 1985.PubMedCrossRefGoogle Scholar
  62. 62.
    Wesolowski SA, Dennis C. Fundamentals of Vascular Grafting, McGraw-Hill, New York, 1963.Google Scholar
  63. 63.
    Jordan GL, Stump MM, Allen J, et al: Gelatin-impregnated Dacron prosthesis implanted into procine thoracic aorta, Surgery, 53: 45, 1963.PubMedGoogle Scholar
  64. 64.
    Krajicek M, Zastava V, Chvapil M: Collagen-fabric vascular prostheses: Biological and morphological experience, J. Surg. Res., 4: 290, 1964.PubMedCrossRefGoogle Scholar
  65. 65.
    Wesolowski SA, Fries CC, Domingo RT, et al: The compound prosthetic vascular graft: A pathologic survey, Surgery, 53: 19, 1963.PubMedGoogle Scholar
  66. 66.
    Norton L, Eiseman B. Replacement of portal vein during pancreatectomy for carcinoma, Surgery, 77: 280, 1975.PubMedGoogle Scholar
  67. 67.
    Campbell CD, Goldfarb D, Roe R: A small arterial substitute: Expanded microporous polytetrafluoroethylene: Patency versus porosity, Ann. Surg., 182: 138, 1975.PubMedCrossRefGoogle Scholar
  68. 68.
    Florian A, Cohn LH, Dammin GJ, et al: Small vessel replacement with Gore-Tex (expanded polytetrafluoroethylene), Arch. Surg., 111: 267, 1976.Google Scholar
  69. 69.
    Sauvage LR, Walker MW, Berger K, et al: Current arterial prostheses. Experimental evaluation by implantation in the carotid and circumflex coronary arteries of the dog, Arch. Surg., 114: 687, 1979.Google Scholar
  70. 70.
    Hamlin GW, Rajah SM, Crow MJ, et al: Evaluation of the thrombogenic potential of three types of arterial graft studied in an artificial circulation, Br. J. Surg., 65: 272, 1978.PubMedCrossRefGoogle Scholar
  71. 71.
    Goldman M, Hall C, Dykes J, et al: Does 111-indium-platelet deposition predict patency in prosthetic arterial grafts ? Br. J. Surg., 70: 635, 1983.PubMedCrossRefGoogle Scholar
  72. 72.
    Campbell CD, Brooks DH, Webster MW, et al: Aneurysm formation in expanded polytetrafluoroethylene prostheses, Surgery, 79: 491, 1976.PubMedGoogle Scholar
  73. 73.
    Pearce JE, Dujovny M, Ho KL, et al: Acute inflammation and endothelial injury in vein grafts, Neurosurgery, 17: 626, 1985.PubMedCrossRefGoogle Scholar
  74. 74.
    Brody WR, Angell WW, Kosek JC: Histologic fate of the venous coronary artery bypass in dogs, Am. J. Pathol., 66: 111, 1972.PubMedGoogle Scholar
  75. 75.
    Zwolak RM, Adams MD, Clowes AW: Kinetics of vein graft hyperplasia: Association with tangential stress, J. Vasc. Surg., 5: 126, 1987.PubMedGoogle Scholar
  76. 76.
    Seidel CL, Lewis RM, Bowers R, et al: Adaptation of canine saphenous veins to grafting: Correlation of contractility and contractile protein content, Circ. Res., 55: 102, 1984.Google Scholar
  77. 77.
    Boerboom LE, Olinger GN, Bonchek LI, et al: Aspirin or dipyridamole individually prevents lipid accumulation in primate vein bypass grafts, Am. J. Cardiol., 55: 556, 1985.PubMedCrossRefGoogle Scholar
  78. 78.
    McCann RL, Hagen PO, Fuchs JCF: Aspirin and dipyridamole decrease intimal hyperplasia in experimental vein grafts, Ann. Surg., 191: 238, 1980.PubMedCrossRefGoogle Scholar
  79. 79.
    Fuster V, Chesebro JH: Role of platelets and platelet inhibitors in aortocoronary artery vein-graft disease, Circulation, 73: 227, 1986.PubMedCrossRefGoogle Scholar
  80. 80.
    Sharma GV, Khuri SF, Josa M, et al: The effect of antiplatelet therapy on saphenous vein coronary artery bypass graft patency, Circulation, 68 (Suppl II): 218, 1983.Google Scholar
  81. 81.
    Cahill PD, Sarris GE, Cooper AD, et al. Inhibition of vein graft arteriosclerosis by eicosapentanoic acid: Correlation with reduced platelet thromboxane production but no change in lipoproteins or LDL receptor density, J. Vasc. Sug., 7: 108, 1988.Google Scholar
  82. 82.
    Landymore RW, MacAulay M, Sheridan B, et al: Comparison of cod-liver oil and aspirin-dipyridamole for the prevention of intimai hyperplasia in autologous vein grafts, Ann Thorac. Surg., 41 (1): 54, 1986.PubMedCrossRefGoogle Scholar
  83. 83.
    Kohler T, Kaufman J, Kakiayanos G, et al: Effect of aspirin and dipyridamole on the patency of lower extremity bypass grafts, Surgery, 96: 462, 1984.PubMedGoogle Scholar
  84. 84.
    Gunstensen J, Smith RC, El-Maraghi N, et al: Intimai hyperplasia in autogenus veins used for arterial replacement, Can. J. Surg., 25: 158, 1982.Google Scholar
  85. 84.
    Berguer R, Higgins RF, Reddy DJ: Intimal hyperplasia: An experimental study, Arch. Surg., 115: 332, 1980.Google Scholar
  86. 85.
    Morinaga K, Okahome K, Kuroki M, et al: Effect of wall shear stress on intimai thickening of arterially transplanted autogenous veins in dogs, J. Vasc. Surg., 2: 430, 1985.PubMedGoogle Scholar
  87. 86.
    Karayannacos P, Rittgers SE, Kakos GS, et al: Potential role of velocity and wall tension in vein graft failure, J. Cardiovasc. Surg., 21: 171, 1980.Google Scholar
  88. 88.
    Morinaga K, Eguchi H, Miyazaki T, et al: Development and regression of intimai thickening of arterially transplanted autologous vein grafts in dogs, J. Vasc. Surg., 5: 719, 1987.PubMedGoogle Scholar
  89. 85.
    Bush Jr HL: Mechanisms of graft failure (Special Communication), J. Vasc. Surg., 9: 392, 1989.CrossRefGoogle Scholar
  90. 86.
    Sanders RJ, Kempczinski RF, Hammond W, et al: The significance of graft diameter, Surgery, 88: 856, 1980.PubMedGoogle Scholar
  91. 87.
    Berger K, Sauvage LR, Rao AM, et al: Healing of arterial prostheses in man: Its incompleteness, Ann Surg., 175: 118, 1972.PubMedCrossRefGoogle Scholar
  92. 88.
    DeBakey ME, Jordan GL, Abbot JP, et al: The fate of Dacron vascular graft, Arch. Surg., 89: 757, 1964.Google Scholar
  93. 89.
    Reichle FA, Stewart GJ, Essa N: A transmission and scanning electron microscope study of luminal surfaces in Dacron and autogenous vein bypasses in man and dog, Surgery, 74: 945, 1973.PubMedGoogle Scholar
  94. 90.
    Warren R, McCoombs HL: Morphologic studies on plastic arterial prostheses in humans, Ann. Surg., 161: 73, 1965.PubMedCrossRefGoogle Scholar
  95. 91.
    Wesolowski SA, Fries CC, Henningar G, et al: Factors contributing to long-term failures in human vascular prosthetic grafts, J. Cardiovasc. Surg., 5: 544, 1964.Google Scholar
  96. 92.
    Herring MB, Compton RS, LeGrand DR, et al: Endothelial seeding of polytetrafluoroethylene popliteal bypasses. A preliminary report, J. Vasc. Surg., 6: 114, 1987.PubMedCrossRefGoogle Scholar
  97. 93.
    Clowes AW: Arterial wall response to injury and healing (Special Communication), J. Vasc. Surg., 9: 373, 1989.CrossRefGoogle Scholar
  98. 94.
    Clowes AW, Reidy MA, Clowes MM: Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium, Lab. Invest., 49: 327, 1983.Google Scholar
  99. 95.
    Clowes AW, Reidy MA, Clowes MM: Mechanisms of stenosis after arterial injury, Lab. Invest., 49: 208, 1983.Google Scholar
  100. 96.
    Clowes AW, Schwartz SM: Significance of quiescent smooth muscle migration in the injured rat carotid artery, Circ. Res., 56: 139, 1985.Google Scholar
  101. 97.
    Reidy MA: Biology of disease: a reassessment of endothelial injury and arterial lesion formation, Lab. Invest., 52: 513, 1985.Google Scholar
  102. 98.
    Owens GK, Reidy MA: Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by coarctation, Circ. Res., 57: 695, 1985.Google Scholar
  103. 99.
    Reidy MA, Chao SS, Kirkman TR, et al: Endothelial regeneration. VI. Chronic nondenuding injury in baboon vascular grafts, Am. J. Pathol., 123: 432, 1986.PubMedGoogle Scholar
  104. 100.
    Clowes AW, Kirkman TR, Reidy MA: Mechanisms of arterial graft healing: rapid transmural capillary ingrowth provides a source of endothelium and smooth muscle in porous PTFE prostheses, Am. J. Pathol., 123: 220, 1986.PubMedGoogle Scholar
  105. 101.
    Ross R: The pathogenesis of arteriosclerosis-an update, N. Engl. J. Med., 314: 488, 1986.PubMedCrossRefGoogle Scholar
  106. 102.
    Schwartz SM, Campbell GR, Campbell JH: Replication of smooth muscle cells in vascular disease, Circ. Res., 58: 427, 1986.Google Scholar
  107. 103.
    Sporn MB, Roberts AB, Wakefield LM, et al: Some recent advances in the chemistry and biology of transforming growth factor-beta, J. Cell. Biol., 105: 1039, 1987.PubMedCrossRefGoogle Scholar
  108. 104.
    Ross R, Raines EW, Bowen-Pope DF: The biology of platelet-derived growth factor, Cell, 46: 155, 1986.PubMedCrossRefGoogle Scholar
  109. 105.
    Carpenter G, Cohen S: Epidermal growth factor, Ann. Rev. Biochem., 48: 193, 1979.PubMedCrossRefGoogle Scholar
  110. 106.
    Gospodarowicz D, Neufeld G, Schweigerer L: Molecular and biological characterization of fibroblast growth factor, and angiogenic factor which also controls the proliferation and differentiation of mesoderm-and neuroectodermderived cells, Cell. Diff., 19: 1, 1986.CrossRefGoogle Scholar
  111. 107.
    Warner SJC, Auger KR, Libby P: Human interleukin I induces interleukin I gene expression in human vascular smooth muscle cells, J. Exp. Med., 165: 1316, 1987.PubMedCrossRefGoogle Scholar
  112. 108.
    Esmon CT: The regulation of natural anticoagulant pathways, Science, 235: 1348, 1987.PubMedCrossRefGoogle Scholar
  113. 109.
    Clouse LH, Comp PC: The regulation of hemostasis: the protein C system, N. Engl. J. Med., 314: 1298, 1986.PubMedCrossRefGoogle Scholar
  114. 110.
    Abbott, WM, Megerman J: Adaptive responses of arteries to grafting (Special Communication), J. Vasc. Surg., 9: 377, 1989.CrossRefGoogle Scholar
  115. 111.
    Bush HL Jr: Mechanisms of graft failure (Special Communication), J. Vasc. Surg., 9: 392, 1989.CrossRefGoogle Scholar
  116. 112.
    Lo Gerfo FW: Hemodynamics and the arterial wall (Special Communication), J. Vasc. Surg., 9: 380, 1989.CrossRefGoogle Scholar
  117. 113.
    Strandness DE Jr, Sumner DS: Hemodynamics for Surgeons, Grune and Stratton, New York, 1975.Google Scholar
  118. 114.
    Lye CR, Sumner DS, Strandness DE Jr: Hemodynamics of the retrograde cross-public anastomosis, Surg. Forum., 26: 298, 1975.Google Scholar
  119. 115.
    Crawshaw HM, Quist WC, Sarrallach E, et al: Flow disturbance at the distal endto-side anastomosis. Effect of patency of the proximal outflow segment and angle of anastomosis, Arch. Surg., 115: 1280, 1980.Google Scholar
  120. 116.
    LoGerfo FW, Soncrant T, Teel T, et al: Boundary layer separation in models of side-to-end arterial anastomoses, Arch. Surg., 114: 1369, 1979.Google Scholar
  121. 117.
    McMillan DE: Blood flow and the localization of atherosclerotic plaques, Stroke, 16: 582, 1985.PubMedCrossRefGoogle Scholar
  122. 118.
    Zarins CK, Giddens DP, Bharadvaj BK, et al: Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circ. Res., 53: 502, 1983.Google Scholar
  123. 119.
    LoGerfo FW, Quist WC, Nowak MD, et al: Downstream anastomotic hyperplasia. A mechanism of failure of Dacron arterial grafts, Ann Surg., 197: 479, 1983.PubMedCrossRefGoogle Scholar
  124. 120.
    Edwards WS: Arterial grafts. Past, present and future, Arch. Surg., 113: 1225, 1978.Google Scholar
  125. 121.
    Cooley DA: Surgical treatment of aortic arch aneurysms, In: International Practice in Cardiothoracic Surgery (Eds. Wu YK, Peters RM ), Science Press, Beijing, 1985.Google Scholar
  126. 122.
    Hansson JE, Megerman J, Abbott WM: Increased compliance near vascular anastomoses, J. Vasc. Surg., 2: 419, 1985.Google Scholar
  127. 123.
    Hansson JE, Megerman J, Abbott WM: Suture technique and para-anastomotic compliance, J. Vasc. Surg., 3: 196, 1986.Google Scholar
  128. 124.
    Duncan DD, Bergeron CB, Borchardt SE, et al: The effect of compliance on wall shear in casts of a human aortic bifurcation, J. Biomech. Engr., 112: 183.Google Scholar
  129. 125.
    Shu MC, Hita CE, Hwang NHC: Hemodynamic models in vascular grafting, in: Vascular Dynamics-Physiological Perspectives (Eds. Westerhof N, Gross DR ), Plenum Press, New York, 1989.Google Scholar
  130. 126.
    Rapaport A, Noon GP, McCollum CH: Polytetrafluoroethylene (PTFE) grafts for hemodialysis in chronic renal failure: Assessment of durability and function at three years, Aust. NZ J. Surg., 51: 561, 1981.Google Scholar
  131. 127.
    Schwab SJ, Raymond JR, Saeed M, et al: Prevention of hemodialysis fistula thrombosis; Early detection of venous thrombosis, Kidney Int., 36: 707, 1989.PubMedCrossRefGoogle Scholar
  132. 128.
    Glagov S, Giddens DP, Bassiouny H, et al: Hemodynamic effects and tissue reactions at graft to vein anastomosis for vascular access, In: Vascular Access for Hemodialysis II (Eds. Sommer B, Michell H ), W. L. Gore and Assoc., 1991.Google Scholar
  133. 129.
    Clowes AW, Gown AM, Hasson SR, Reidy MA: Mechanisms of arterial graft failure: Role of cellular proliferation in early healing of PTFE prostheses, Am. J. Path., 118: 43, 1985.PubMedGoogle Scholar
  134. 130.
    Fillinger MF, Kerns DB, Schwartz RA: Hemodynamics and intimai hyperplasia, In: Vascular Access for Hemodialysis II (Eds., Sommer B, Michell B ), W. L. Gore and Assoc., 1991.Google Scholar
  135. 131.
    Ku DN, Giddens DP: Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation, J. Biomech., 20: 407, 1987.PubMedCrossRefGoogle Scholar
  136. 132.
    Lutz RJ, Hsu L, Menawat A, Zrubek J, Edwards K: Comparison of steady and pulsatile flow in a double branching arterial model, J. Biomech., 16: 753, 1983.PubMedCrossRefGoogle Scholar
  137. 133.
    Einav S, Avidor J, Viden B: Hemodynamics of coronary artery-saphenous vein bypass, J. Biomed. Engr, 7305, 1985.Google Scholar
  138. 134.
    Pei H, Xi BS, Hwang NHC: Wall shear stress distribution in a model human aortic arch: assessment by an electrochemical technique, J. Biomech., 18: 645, 1985.PubMedCrossRefGoogle Scholar
  139. 135.
    Liepsch D: Flow in tubes and arteries, a comparison, J. Biorheology, 23: 395, 1986.Google Scholar
  140. 136.
    Ku DN, Liepsch D: The effects of non-Newtonian viscoelasticity on flow at 90 degree bifurcation, Biorheology, 23: 359, 1986.PubMedGoogle Scholar
  141. 137.
    Shu MSC, Hwang NHC: Hemodynamics of angioaccess venous anastomoses, J. Biomed. Engr., 13: 103, 1991.CrossRefGoogle Scholar
  142. 138.
    Deters OJ, Bargeron CB, Mark FF, Friedman MH: Measurement of wall motion and wall shear stress in a compliant arterial cast, J. Biomech. Engr., 108: 355, 1986.CrossRefGoogle Scholar
  143. 139.
    Liepsch D, Moravec S: Pulsatile flow on non-Newtonian fluids in distensible models of human artery, Biorheology, 21: 571, 1984.PubMedGoogle Scholar
  144. 140.
    Gentile BJ, Gross DR, Chuong CTJ, Hwang NHC: Segmental volume distensibility of the canine thoracic aorta in vivo, Cardiovas. Res., 22: 385, 1988.Google Scholar
  145. 141.
    Zhou JS, Wahab SA, Guo XM, et al: Monitoring vascular wall motions with a laser optic system, In: 1990 Advances in Bioengineering (Ed., Goldstein SA), ASME BED, 17:193, 1990.Google Scholar
  146. 142.
    Therat DP, Levesque MJ, Sato M, Nerem RM, Wheeler LT: The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements, ASME J. of Biomech. Engr., 110: 190, August 1988.CrossRefGoogle Scholar
  147. 143.
    Blasberg P, Wurzinger LJ, Musler K, Myrenne H, Schmid-Schonbein H: A platelet aggregometer with automatic data processing, Thromb. Haemostas., 46: 132, 1981.Google Scholar
  148. 144.
    Wesolow A: The healing of arterial prostheses - the state of the art, Thorac. Cardiovas. Surg., 30: 196, 1982.Google Scholar
  149. 145.
    Haubold A, Borovetz, HS: Stress-strain characteristics of vascular prostheses: Is there a relationship to healing and graft patency? In: Vascular Dynamics: Physiology Perspectives (Eds., Westerhof N, Gross DR), Plenum Press, New York, 277, 1989.Google Scholar
  150. 146.
    Mori Y: Vascular graft materials and their structure, In: Vascular Dynamics: Physiological Perspectives (Eds., Westerhof N, Gross Dr), Plenum Press, New York, 287, 1989.Google Scholar
  151. 147.
    Van Bemmelen PS, Beach K, Bedford G, Strandness DE Jr: The mechanism of venous closure: Its relationship to the velocity of reverse flow, Arch. Surg., 125: 617, 1990.Google Scholar
  152. 148.
    Eklof B, Gjores JE, Thulesius O, Bergqvist D: Controversies in Management of Venous Disorders, Butterworths, London, 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Travis J. Phifer
    • 1
  • Ned H. C. Hwang
    • 2
  1. 1.Department of SurgeryLouisiana State University School of MedicineShreveportUSA
  2. 2.Department of Biomedical EngineeringMemphis State UniversityMemphisUSA

Personalised recommendations