Advertisement

Flow Models Studies of Heart Valves

  • Klaus Affeld
  • Klaus Schichl
  • Andreas Ziemann
Part of the NATO ASI Series book series (NSSA, volume 235)

Abstract

In order to simulate the blood flow through an artificial heart valve, a device is required that generates the appropriate flow and pressure conditions, i.e., a mock circulation. Despite the many years of research on artificial heart valves, a consensus among researchers about an optimal flow model has not yet been attained. As the many references and also the guidelines of the International Standard Organization(1) show, there are no well defined specifications on the testing of artificial heart valves. The reason for the absence of agreement on this matter is possibly that the problems to be investigated regarding the flow model are inordinately complex. In this paper we will suggest two models that we believe reduce this complexity, thus facilitating the determination of the appropriate flow. Accordingly, we divide the flow models into two groups:
  • flow models to measure the bulk hydrodynamic qualities of the valve; and

  • flow models to research the valve’s thromboembolic qualities.

Keywords

Shear Rate Flow Model Heart Valve Flow Separation Ball Screw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Standard Organization (ISO) 5840: (E), Cardiovascular Implants - Cardiac Valve Prostheses, Geneva, Switzerland, 1989.Google Scholar
  2. 2.
    Reul H: In vitro evaluation of artificial heart valves, In: Advances in Cardiovascular Physics, 5:17–30, Karger Pub. Co., 1983.Google Scholar
  3. 3.
    Scotten LN, Walker DK, Smith DW, Brownlee RT: A versatile pump for simulating physiological fluid flows, Proc. AAMI, 18 Ann. Meeting, 1983.Google Scholar
  4. 4.
    Affeld K, Spiegelberg A, Schichl K, Mohnhaupt A: Design of a new tester for artificial heart valves, Life Support Systems, 4 (2): 142–144, 1986.Google Scholar
  5. 5.
    Affeld K: Dichtung zum Abdichten eines pneumatisch oder hydraulisch betriebenen Kolbens, Offenlegungsschrift DE 3325179 A 1, Deutsches Patentamt, 1985.Google Scholar
  6. 6.
    Affeld K, Pszolla H, Lehmann B, Mohnhaupt R: Measurement of the flow field behind artificial heart valves with the help of the laser-doppler-effect, Proc. ISAO, II: 439–441, 1979.Google Scholar
  7. 7.
    Pszolla H, Affeld K, Lehmann B, Mohnhaupt A: Messung des Geschwindigkeitsfeldes hinter einer künstlichen Herzklappe (Björk-Shiley-Ventil) mit dem Laser-Doppler Anemometer, Biomed. Technik 24, Erg.-Band, 1979.Google Scholar
  8. 8.
    Yoganathan AP, Woo YR, Sung HW: Turbulent shear stress measurements in the vicinity of aortic valve prostheses, J. Biomech., 19 (6): 433–442, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Reul H, Giersiepen M, Knott E: In vitro testing of bioprostheses, Trans. ASAIO, 34: 1033–1039, 1988.Google Scholar
  10. 10.
    Affeld K, Schmidt S, Bücherl ES: Form-und Festigkeitsuntersuchungen von Aorten-und Pulmonalklappen des Rindes, Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik, 85–88, 1973.Google Scholar
  11. 11.
    Jansen J, Willeke S, Reiners B, Harbott P, Reul H, Rau G: New J-3 flexible-leaflet polyurethane heart valve prosthesis with improved hydrodynamic performance, The International J. of Artificial Organs, 14 (10): 655–660, 1991.Google Scholar
  12. 12.
    Liepsch DW, Levesque M, Nerem RM, Moravec ST: Correlation of Laser Doppler Velocity Measurements and Endothelial Cell Shape in a Stenosed Dog Aorta, Vascular Endothelium in Health and Disease, Plenum Publ. Corp., 43–50, 1988.Google Scholar
  13. 13.
    Astarita G: Scale-up problems arising with non-Newtonian fluids, J. of Non-Newtonian Fluid Mechanics, 4: 285–298, 1978.CrossRefGoogle Scholar
  14. 14.
    Gad-el-Hak M: Visualization techniques for unsteady flows: An overview, J. of Fluids Engineering, 110: 231–243, 1988.CrossRefGoogle Scholar
  15. 15.
    Affeld K, Walker P, Schichl K: Novel Flow Visualization to Detect Sites of Thrombus Formation at Artificial Heart Valves, Proc. ESAO, Brno: 91–100, 1988.Google Scholar
  16. 16.
    Affeld K, Walker P, Schichl K: The use of image processing for the investigation of artificial heart valve flow, Proc. ASAIO, 294–298, 1989.Google Scholar
  17. 17.
    Gonzalez RC, Wintz P: Digital Image Processing, Addison-Weseley Publishing Company, Reading, UK, 1987.Google Scholar
  18. 18.
    Gentle R: Minimizing of pressure drop across heart valve conduits: A preliminary study, Life Support Systems, 1 (4): 263–270, 1983.Google Scholar
  19. 19.
    Tansley GD: Numerical Analysis of Turbulent, Non-Newtonian Fluid Flow through Heart Valve Conduits, Ph.D. thesis, Trent Polytechnic, Nottingham, U.K., 1988.Google Scholar
  20. 20.
    Vondran T: Untersuchung der Umströmung einer Starr-Edwards-Kugelherzklappe im Modell, Diplomarbeit, Technische Universität Berlin, Unpublished M.A. - thesis, 1991.Google Scholar
  21. 21.
    Wurzinger L, Opitz R, Wolf M, Schmid-Schönbein H: Shear induced platelet activation, Biorheology, 1985.Google Scholar
  22. 22.
    Hashimoto S, Maeda H, Sasada T: Effect of shear rate on clot growth at foreign surfaces, Artificial Organs, 9 (4): 345–350, 1985.PubMedCrossRefGoogle Scholar
  23. 23.
    Schraub FA, Kline SJ, Henry J, Runstadler PW, Littell A: Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low-speed water flows, J. of Basic Engineering, Transactions of the ASME, 429–444, 1965.Google Scholar
  24. 24.
    Affeld K, Walker P, Schichl K: Upscaling as a tool in biofluidmechanics - demonstrated at the artificial heart valve flow, In: Biomechanical Transport Processes (Ed., Mosora F et al.), Series A: Life Sciences, 193, Plenum Press, New York, 1990.Google Scholar
  25. 25.
    Woo YR, Yoganathan A: In vitro pulsatile flow velocity and turbulent shear stress measurement in the vicinity of mechanical aortic heart valve prostheses, Life Support Systems, 3: 283–312, 1985.PubMedGoogle Scholar
  26. 26.
    Taenzer L: Konvektiver Fluidaustausch bei künstlichen Herzklappen, Diplomarbeit, Technische Universität Berlin, unpublished M.A. thesis, 1991.Google Scholar
  27. 27.
    Brami B: Current trends in prosthetic heart valves, In: Frontiers in Cardiovascular Engineering (Eds., Hwang NHC, Turitto VT, Yen MRT ), Plenum Publishing Corp., New York, 1992.Google Scholar
  28. 28.
    Goldsmith H, Turitto VT: Rheological aspects of thrombosis and haemostasis: Basic principles and applications, Thrombosis and Haemostasis, 55 (3): 415–435, 1986.PubMedGoogle Scholar
  29. 29.
    Schmid-Schönbein H: Thrombose als ein Vorgang in “strömendem Blut”. Wechselwirkung fluiddynamischer, rheologischer und enzymologischer Ereignisse beim Ablauf von Thrombozytenaggregation und Fibrinpolimerisation, Hämostaseologie, 8: 149–173, 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Klaus Affeld
    • 1
  • Klaus Schichl
    • 1
  • Andreas Ziemann
    • 1
  1. 1.Biofluidmechanik Labor, UKRVFreie Universität Berlin1 Berlin 19Germany

Personalised recommendations