Advertisement

Laser Measurements in Cardiovascular Flow Dynamics Research

  • Shi-Kang Wang
  • Ned H. C. Hwang
Part of the NATO ASI Series book series (NSSA, volume 235)

Abstract

Flow dynamic measurement in cardiovascular systems usually refers to the measurement of the time dependent pressure, blood flow velocity, and the volumetric flow rates. Generally, flow dynamic measurements in cardiovascular systems are rather difficult. This is not only because that the flow is basically unsteady, but also the physical frame of reference is always moving. During the past decades, various types of flow measurement instruments have been designed and developed. Among which, laser Doppler anemometer (LDA) has been one of the most favorite tool in laboratory studies.

Keywords

Pulsatile Flow Reynolds Shear Stress Laser Doppler Anemometer Squeeze Flow Wall Shear Stress Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gordon EI: A review of acousto-optical deflection and modulation devices, Proc. IEEE, 54: 1391–401, 1966.CrossRefGoogle Scholar
  2. 2.
    Wang SK, Guo XM, Shi SX: Optic-electro-modulation feedback laser Doppler anemometer, Chinese patent No. 85–108397, 1985.Google Scholar
  3. 3.
    Guo XM, Wang SK, Liu CW, Hwang NHC: A new LDA system utilizing the optic-electro-hybrid feedback technique, J. of Physics E., Meas. Sci. Technol., 1: 265–271, 1990.CrossRefGoogle Scholar
  4. 4.
    Hwang NHC, Lu PC, Sallam AM: Measurements of turbulence in aortic valve prostheses, In: Prosthetic Heart Valves (Ed., Yoganathan AP), AAMI, CIT Press, Pasadena, California, 91–120, 1979.Google Scholar
  5. 5.
    Bruss KH, Reul H, Van Gilse J: Pressure drop and velocity fields at four mechanical heart valve prostheses, Life Support Systems, 1: 3–22, 1983.PubMedGoogle Scholar
  6. 6.
    Woo YR, Yoganathan AP: In vitro pulsatile flow velocity and turbulent shear stress measurements in the vicinity of mechanical aortic heart valve prostheses, Life Support Systems, 3: 283–312, 1985.PubMedGoogle Scholar
  7. 7.
    Schwarz AC, Tiederman WG, Phillips WM: Influence of cardiac flow rate on turbulent shear stress from a prosthetic heart valve, J. Biomech. Eng. ASME, 111: 123–8, 1988.CrossRefGoogle Scholar
  8. 8.
    Klepetko W, Moritz A, Khunl-Brady G, Schreiner W, Schlick W, Mlczoch J, Kronik G, Wolner E: Implantation of the Duromedic bileaflet cardiac prostheses in 400 patients, Ann Thoraxic Surgery, 44: 308–309, Sept. 1987Google Scholar
  9. 9.
    Klepetko W, Mortiz A: Leaflet fracture in Edwards-Duromedic leaflet valves, J. Thorac. and CV Surg., 97: 90–94, 1989.Google Scholar
  10. 10.
    Quijano RC: Edwards-Duromedic dysfunctional analysis, Proceedings of Cardiostim: 6th International Congress, Monte Carlo, Monaco, 1988.Google Scholar
  11. 11.
    Kafesjian R, Wieting DW, Ely J, Chalhine G, Frederick G, Watson R: Characterization of the cavitation potential of Pyrolitic carbon, Proceedings of International Symposium Heart Valve Diseases, London, UK, June 12–16, 1989.Google Scholar
  12. 12.
    Bokros JC, LaGrange LD, Schoen FJ: Control of structure of carbon for use in bioengineering, In: Chemistry and Physics of Carbon (Ed., Walker PL), Dekker, New York, 103–171, 1972.Google Scholar
  13. 13.
    Tokuno T, Dube CM, Walker WF: Cavitation near moving prosthetic surfaces, Artif. Organs (Supp. II), 166–168, 1978.Google Scholar
  14. 14.
    Lamson CL, Stinebring DR, Deutsch S, Tarbell JM: Real-time in vitro observation of cavitation in a prosthetic heart valve, Trans. ASAIO, (in press, 1991).Google Scholar
  15. 15.
    Guo X, Xu CC, Hwang NHC: The closing velocity of paxter-Duromedic heart valve prosthesis, Trans. Am. Soc. Artif. Intern. Organs, 36: 529–532, 1990.Google Scholar
  16. 16.
    Adrian RJ: Laser velocimetry, In: Fluid Mechanics Measurement (Ed., Goldstein RJ), Hemisphere Publishing Corporation, Berlin, 155–244, 1983.Google Scholar
  17. 17.
    Feldman HJ et al.: Noninvasive in vivo and in vitro study of the St. Jude Medical mitral valve prosthesis, Am. J. Cardiol., 49: 1101–09, 1982.CrossRefGoogle Scholar
  18. 18.
    Prahbu A, Hwang NHC: Dynamic analysis of flutter in disc type mechanical heart valve prostheses, J. Biomech., 21 (7): 585–90, 1988.CrossRefGoogle Scholar
  19. 19.
    Reif TH, Schulte TJ, Hwang NHC: Estimation of the rotational undamped natural frequency of bileaflet cardiac valve prostheses, J. Biomech. Engr., ASME, 112: 327–32, 1990.CrossRefGoogle Scholar
  20. 20.
    Hele-Shaw HJS: Investigation of the nature of the surface resistance of water and of streamline motion under certain experimental conditions, Trans. Inst. Naval Architects, 40, 1898.Google Scholar
  21. 21.
    Ku DN, Giddens DP: Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation, J. Biomech., 20: 407–21, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Khodadadi JM, Valchos NS, Liepsch D, Moravec S: LDA measurements and numerical prediction of pulsatile laminar flow in a plane 90-degree bifurcation, J. Biomech. Eng., 110: 129–36, 1988.PubMedCrossRefGoogle Scholar
  23. 23.
    Sallam AM, Hwang NHC: Human red blood cell hemolysis in a turbulent shear flow–Contribution of Reynolds shear stresses, J. Biorheol., 21: 783–97, 1985.Google Scholar
  24. 24.
    Lutz RJ, Hsu L, Menawat A, Zrubek J, Edwards K: Comparison of steady and pulsatile flow in a double branching arterial model, J. Biomech., 16: 753–66, 1983.PubMedCrossRefGoogle Scholar
  25. 25.
    Einav S, Avidor J, Vidne B: Haemodynamics of coronary artery-saphenous vein bypass, J. Biomed. Eng., 7: 305–9, 1985.PubMedCrossRefGoogle Scholar
  26. 26.
    Abdallah SA, Hwang NHC: Arterial stenosis murmurs: An analysis of pressure and flow fields, J. Acoust. Soc. Am., 83: 318–344, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Goldsmith HL, Karino T: Mechanically induced thromboemboli, In: Quantitative Cardiovascular Studies (Eds., Hwang NHC, Gross DR, Patel DJ ), University Park Press, Baltimore, Maryland, 1978.Google Scholar
  28. 28.
    Pei H, Xi BS, Hwang NHC: Wall shear stress distribution in a model human aortic arch: Assessment by an electrochemical technique, J. Biomech., 18: 645–56, 1985.PubMedCrossRefGoogle Scholar
  29. 29.
    Karino T, Motomiya M: Flow patterns in the human carotid artery bifurcation, Stroke, 15: 50, 1984.PubMedCrossRefGoogle Scholar
  30. 30.
    Liepsch D, Moravec S: Pulsatile flow on non-Newtonian fluids in distensible models of human artery, J. Biorheol., 21: 571–86, 1984.Google Scholar
  31. 31.
    Liepsch D: Flow in tubes and arteries, a comparison, J. Biorheol., 23: 395–433, 1986.Google Scholar
  32. 32.
    Deters OJ, Bargeron CB, Mark FF, Friedman MH: Measurement of wall motion and wall shear stress in a compliant arterial cast, J. Biomech. Eng., 108: 355–358, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    Shu MCS, Noon GP, Hwang NHC: Phasic flow patterns in a hemodialysis venous anastomosis, J. Biorheol., 24: 711–722, 1987.Google Scholar
  34. 34.
    Shu MCS, Noon GP, Hwang NHC: Flow profiles and wall shear stress distribution at a hemodialysis venous anastomosis: preliminary study, J. Biorheol., 24: 723–35, 1987.Google Scholar
  35. 35.
    Zamora JL, Gao ZR, Weilbaecher G, Navarro L, Ives CL, Hita C, Noon GP: Hemodynamic and morphologic feature of arteriovenous angioaccess loop grafts, Proc. ASAIO, Atlanta, Georgia, USA, May, 1985.Google Scholar
  36. 36.
    Noon GP, Hwang NHC: Hemorheologic contribution to thrombosis, Devices and Technology Branch Contractors Meeting, NHLBI-NIH, December, 1987.Google Scholar
  37. 37.
    Shu MCS: Hemodynamics study of angioaccess venous anastomoses, Ph.D. Thesis, University of Houston, Houston, Texas, 1988.Google Scholar
  38. 38.
    Gentile BJ, Gross DR, Chuong CTJ, Hwang NHC: Segmental volume distensibility of the canine thoracic aorta in vivo, Cardiovasc. Res., 22: 385–9, 1988.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang LC, Guo GX, Tu R, Hwang NHC: Graft compliance and anastomotic flow patterns, Trans. Am. Soc. Artif. Intern. Organs, XXXVI: 1–5, 1990.Google Scholar
  40. 40.
    Gartrell LR, Rhodes DB: A scanning Laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distribution, NASA Technical paper, NASA: TP-1661, 43, 1980.Google Scholar
  41. 41.
    Hino M, Nadaoka K, Kobayashi T, Hironaga K, Muramoto T: Flow structure measurement by beam scan type LDA, Fluid Dyn. Res., 1: 177–190, 1987.CrossRefGoogle Scholar
  42. 42.
    Wang SK et al: Acousto-optical scanning laser Doppler anemometry, Chinese patent No. 88–2165836, 1988.Google Scholar
  43. 43.
    Guo GX, Li W, Hwang NHC: Measurement of tube flow velocity profiles utilizing acousto-optic scanning LDA, ASME Winter Annual Meeting, Dallas, Texas, USA, Nov. 25–30, 1990.Google Scholar
  44. 44.
    Li EB, Wang SK: Two-component LDA system with optic-electro-hybrid feedback, Proc. Intern. Conf. on Fluid Dynamics Measurement and Its Applications, Beijing, China, Oct. 25–27, 1989.Google Scholar
  45. 45.
    Oldengarm J: Two-dimensional laser Doppler velocimetry, Proceedings of the LDA-Symposium, Copenhagen, 1975.Google Scholar
  46. 46.
    Patel DJ, Vaishnav RN: Mechanical properties of arteries, In: Cardiovascular Flow Dynamics and Measurements (Eds., Hwang NHC, Normann NA ), University Park Press, Baltimore, Maryland, 1987.Google Scholar
  47. 47.
    Betram CD: Ultra sonic transit-time system for arterial diameter measurement, Med. Biol. Eng. Comput., 15: 589–499, 1977.CrossRefGoogle Scholar
  48. 48.
    Begel DH: The static elastic properties of the arterial wall, J. Physol., 156: 445–457, 1961.Google Scholar
  49. 49.
    Zhou JS, Wahab SA, Hwang NHC: Monitoring vascular wall motions with a laser optical system, ASME Winter Annual Meeting, Dallas, Texas, USA, Nov. 25–30, 1990.Google Scholar
  50. 50.
    Image Sensing Products Manual: EGG Reticon Company, Salem, Massachusetts, 01970, 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Shi-Kang Wang
    • 1
  • Ned H. C. Hwang
    • 1
  1. 1.Cardiovascular Engineering Laboratory Department of Biomedical EngineeringMemphis State UniversityMemphisUSA

Personalised recommendations