Advertisement

Construction of Daniell Integrals

  • Shelby J. Haberman
Part of the Springer Series in Statistics book series (SSS)

Abstract

Daniell integrals and expectations in common use in statistics exist which are not weighted sums and are not derived from weighted sums by use of distributions or inverse distributions. This chapter considers two basic techniques for construction of Daniell integrals. The first technique, described in Section 4.1, applies to a population S and a pseudometric d on S. As in Riesz (1914) and Tjur (1980, p. 17), if S is locally compact relative to d, then any positive linear functional G on C 0d is a Daniell preintegral. Then, as in Section 2.3, H = Ix(G) is a Daniell integral. In many typical cases, the positive linear functional G on C 0d is readily constructed by using limits of weighted sums. Thus, in Section 4.1, Lebesgue (1904, 1910) integrals are developed for subpopulations of the real line. Transformations and weights are then used in Section 4.2 to construct a variety of Daniell integrals and expectations in common use. In Section 4.3, product integrals are developed and used to construct Lebesgue integrals for subpopulations of R T for finite populations T.

Keywords

Real Function Positive Semidefinite Real Matrix Finite Population Limit Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Shelby J. Haberman
    • 1
  1. 1.Department of StatisticsNorthwestern UniversityEvanstonUSA

Personalised recommendations