Lactose: Nutritional Significance

  • A. Mustapha
  • S. R. Hertzler
  • D. A. Savaiano


Evolutionary development has resulted in the synthesis of a galactose-containing disaccharide, lactose, which is secreted into mammalian milk as the primary carbohydrate source for mammals. The benefit to the species of this unique carbohydrate (and its constituent monosaccharide, galactose) is not completely clear. It may be that dietary galactose plays an important role in membrane structure and function in the neonate. It is also plausible that lactose solubility is best matched to milk synthesis and expression. The synthesis of a disaccharide, as opposed to a polysaccharide or monosaccharide, is also of evolutionary interest. This disaccharide may provide appropriate energy while minimizing osmotic load. Hence, the evolutionary development of a disaccharidase in the neonatal intestine was also necessary for the cleavage of this unique carbohydrate and the utilization of its constituent monosaccharides.


Lactose Intolerance Breath Hydrogen Lactase Persistence Lactase Activity Lactose Content 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alm, L. (1982) Effect of fermentation on lactose, glucose and galactose content in milk and suitability of fermented milk products for lactose intolerant individuals. J. Dairy Sci., 65, 346–52.Google Scholar
  2. Argenzio, R.A. and Meuten, D.J. (1991) Short-chain fatty acids induce reversible injury of porcine colon. Dig. Dis. Sci., 36, 1459–68.Google Scholar
  3. Armbrecht, H.J. and Wasserman, H.H. (1976) Enhancement of Ca++ uptake by lactose in the rat small intestine. J. Nutr., 106, 1265–71.Google Scholar
  4. Arrigoni, E., Pochart, P., Flourie, B., et al. (1992) Does a prolonged lactose ingestion induce clinical and colonic metabolism adaptations in lactose intolerant subjects? Gastroenterology, 102, A197.Google Scholar
  5. Auricchio, S. (1994) Regulatory mechanisms of the lactase activity in adult intestine. Gastroenterology, 106, 1376–8.Google Scholar
  6. Auricchio, S. and Maiuri, L. (1993) Cellular basis of adult-type hypolactasia, in Common Food Intolerances 2: Milk in Human Nutrition and Adult-Type Hypolactasia, ( S. Auricchio, and G. Semenza eds.) Karger, Basel, pp. 85–92.Google Scholar
  7. Ballongue, J. (1993) Bifidobacteria and probiotic action, in Lactic Acid Bacteria, ( S. Salminen, and A. von Wright eds.) Marcel-Dekker, Inc., New York, pp. 357–428.Google Scholar
  8. Bartram, H.P., Scheppach, W., Gerlach, S., et al. (1994) Does yoghurt enriched with Bifidobacterium longum affect colonic microbiology and fecal metabolites in healthy subjects? Am. J. Clin. Nutr., 59, 428–32.Google Scholar
  9. Bedine, M.S. and Bayless, T.M. (1973) Intolerance of small amounts of lactose by individuals with low lactase levels. Gastroenterology, 65, 735–43.Google Scholar
  10. Beutler, E., Baluda, M.C., Sturgeon, P. and Day, R. (1965) A new genetic abnormality resulting in galactose- 1 -phosphate uridyl transferase deficiency. Lancet, 1, 353–4.Google Scholar
  11. Bircher, J., Muller, J., Guggenheim, P. and Haemmerli, U.P. (1966) Treatment of chronic portal systemic encephalopathy with lactulose. Lancet, 1, 890–2.Google Scholar
  12. Boll, W., Wagner, P. and Mantei, N. (1991) Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase. Am. J. Human Genet., 48, 889–902.Google Scholar
  13. Burvall, A., Asp, N.G., Bosson, A., et al. (1978) Storage of lactose-hydrolyzed dried milk: effect of water activity on the protein nutritional value. J. Dairy Res., 45, 381–9.Google Scholar
  14. Calloway, D.H., Murphy, E.L. and Bauer, D. (1969) Determination of lactose intolerance by breath analysis. Am. J. Dig. Dis., 14, 811–15.Google Scholar
  15. Chen, W.J., Anderson, J.W. and Jennings, D. (1984) Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proc. Soc. Exp. Biol. Med., 175, 215–18.Google Scholar
  16. Cochet, B., June, A., Griessen, M., et al. (1983) Effects of lactose on intestinal calcium absorption in normal and lactase-deficient subjects. Gastroenterology, 84, 35–40.Google Scholar
  17. Conn, H.O. and Flock, M.H. (1970) Effects of lactulose and Lactobacillus acidophilus on the fecal flora. Am. J. Clin. Nutr., 23, 1588–94.Google Scholar
  18. Cohn, R.M. and Roth, K.S. (1983) Carbohydrate disorders, in Metabolic Disease. A Guide to Early Recognition, W.B. Saunders Co., Philadelphia, PA, pp. 270–80.Google Scholar
  19. Cummings, J.H., Pomane, E.W., Branch, W.J., et al. (1987) Short-chain fatty acids in human large intestine, portal, hepatic, and venous blood. Gut, 28, 1221–7.Google Scholar
  20. Dahlqvist, A. (1983) Digestion of lactose, in Milk Intolerances and Rejection, ( J. Delmont, ed.), Karger, Basel, pp. 11–16.Google Scholar
  21. Dahlqvist, A., Hammond, J.B., Crane, R.K., et al. (1963) Intestinal lactase deficiency and lactose intolerance in adults. Gastroenterology, 45, 488–91.Google Scholar
  22. Delmont, J. (1983) Milk consumption and rejection throughout the world, in Milk Intolerances and Rejection, ( J. Delmont, ed.), Karger, Basel, pp. 1–10.Google Scholar
  23. Donnel, G.N., Ng, W.G., Hodgman, J.E. and Bergren, W.R. (1967) Galactose metabolism in the newborn infant. Pediatrics, 39, 829–37.Google Scholar
  24. Dunger, D.B. and Holton, J.B. (1987) Disorders of carbohydrate metabolism, in The Inherited Metabolic Diseases, ( J.B. Holton, ed.), Churchill Livingstone, New York, pp. 18–58.Google Scholar
  25. Fajardo, O., Naim, H.Y, and Lacey, S.W. (1994) The polymorphic expression of lactase in adults is regulated at the messenger RNA level. Gastroenterology, 106, 1233–41.Google Scholar
  26. Favus, M.J. and Angeid-Backman, E.A. (1984) Effects of lactose on calcium absorption and secretion by rat ileum. Am. J. Physiol., 246, G281–G285.Google Scholar
  27. Feeley, R.M., Criner, P.E. and Slover, H.T. (1975) Major fatty acids and proximate composition of dairy products. J. Am. Diet. Assoc., 66, 140–6.Google Scholar
  28. Florent, C., Flourie, B., Leblond, A., et al. (1985) Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J. Clin. Invest., 75, 608–13.Google Scholar
  29. Flourie, B., Briet, F., Florent, C., et al. (1993) Can diarrhea induced by lactulose be reduced by prolonged ingestion of lactulose? Am J. Clin. Nutr., 58, 369–75.Google Scholar
  30. Flynn, A. (1985) Nutritional significance of lactose: II. Metabolism and toxicity of galactose, in Developments in Dairy Chemistry 3, ( P.F. Fox, ed), Elsevier Applied Science Publishers Ltd., London, pp. 133–41.Google Scholar
  31. Frieburghaus, A.U., Schmitz, J., Schindler, M., et al. (1976) Protein patterns of brush-border fragments in congenital lactose malabsorption and in specific hypolactasia of the adult. N. Engl. J. Med., 294, 1030–2.Google Scholar
  32. Gilliland, S.E. and Kim, H.S. (1984) Effect of viable starter culture bacteria in yoghurt on lactose utilization in humans. J. Dairy Sci., 67, 1–6.Google Scholar
  33. Gilliland, S.E., Staley, T.E. and Bush, L.J. (1984) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci., 67, 3045–51.Google Scholar
  34. Gitzelmann, R. (1965) Deficiency of erythrocyte galactokinase in a patient with galactose diabetes. Lancet, 2, 670–1.Google Scholar
  35. Gitzelmann, R. (1972) Deficiency of uridine diphosphate galactose-4-epimerase in blood cells of an apparently healthy infant. Helv. Paediatr. Acta, 27, 125–30.Google Scholar
  36. Goodenough, E.R. and Kleyn, D.H. (1976a) Qualitative and quantitative changes in carbohydrates during the manufacture of yoghurt. J. Dairy Sci., 59, 45–7.Google Scholar
  37. Goodenough, E.R. and Kleyn, D.H. (1976b) Influence of viable yoghurt microflora on digestion of lactose by the rat. J. Dairy Sci., 59, 601–6.Google Scholar
  38. Griessen, M., Cochet, B., Infante, F., et al. (1988a) Calcium absorption from milk in lactase-deficient subjects. Am. J. Clin. Nutr., 49, 377–84.Google Scholar
  39. Griessen, M., Speich, P.V., Infante, F., et al. (1988b) Effect of absorbable and nonabsorbable sugars on intestinal calcium absorption in humans. Gastroenterology, 96, 769–75.Google Scholar
  40. Harworth, J.C. and Ford, J.D. (1963) Variation of the oral galactose test with age. J. Pediatr., 63, 276–82.Google Scholar
  41. Hayakawa, K., Mizutani, J., Wada, K. et al. (1990) Effects of soybean oligosaccharides on human fecal flora. Microbiol. Ecol. Health Dis., 3, 293–303.Google Scholar
  42. Hayman, S. and Kinoshita, J.H. (1965) Isolation and properties of lens aldose reductase. J. Biol. Chem., 240, 877–82.Google Scholar
  43. Hertzler, S.R. and Savaiano, D.A. (1993) Colonic metabolism and lactose tolerance. FASEB J., 7, A583.Google Scholar
  44. Hill, M.J. (1983) Bacterial adaptation to lactase deficiency, in Milk Intolerances and Rejection, ( J. Delmont, ed.), Karger, Basel, pp. 22–6.Google Scholar
  45. Holsinger, V.H. (1978) Applications of lactose-modified milk and whey. Food Technol., 32 (3), 35–40.Google Scholar
  46. Holton, J.B., Gillett, M.G., McFaul, R. and Young, R. (1981) Galactosaemia: a new severe variant due to uridine diphosphate galactose-4-epimerase deficiency. Arch. Dis. Child., 56, 885–7.Google Scholar
  47. Holzel, A., Schwarz, V. and Sutcliffe, K.W. (1959) Defective lactose absorption causing malnutrition in infancy. Lancet, 1, 1126–8Google Scholar
  48. Ito, M. and Kimura, M. (1993) Influence of lactose on fecal microflora in lactose maldigesters. Microbiol. Ecol. Health Dis., 6, 73–6.Google Scholar
  49. Ito, M., Deguchi, Y., Miyamori, A., et al. (1990) Effects of administration of galactooligosaccharides on the human faecal microflora, stool weight, and abdominal sensation. Microbiol. Ecol. Health Dis., 3, 285–92.Google Scholar
  50. Johnson, A.O., Semenya, J.G., Buchowski, M.S., et al. (1993) Adaptation of lactose maldigesters to continued milk intakes. Am. J. Clin. Nutr., 58, 879–81.Google Scholar
  51. Jones, D.V., Latham, M.C., Kosikowski, F.V. and Woodward, G. (1976) Symptoms response to lactose-reduced milk in lactose-intolerant adults. Am. J. Clin. Nutr., 29, 633–8.Google Scholar
  52. Jenkins, D.J.A., Wolever, T.M.S., Jenkins, A., et al. (1991) Specific types of colonic fermentation may raise low-density-lipoprotein-cholesterol concentrations. Am. J. Clin. Nutr., 54, 141–7.Google Scholar
  53. Kelley, S.E., Chawla-Singh, K., Sellin, J.H., et al. (1984) Effect of meal composition on calcium absorption: enhancing effect of carbohydrate polymers. Gastroenterology, 87, 596–600.Google Scholar
  54. Kien, C.L., Sumners, J.E., Stetina, J.S., et al. (1982) A method for assessing carbohydrate energy absorption and its application to premature infants. Am. J. Clin. Nutr., 36, 910–16.Google Scholar
  55. Kien, C.L., Leichty, E.A., Meyerberg, D.Z. and Mullet, M.D. (1987) Dietary carbohydrate assimilation in the premature infant: evidence for a nutritionally significant bacterial ecosystem in the colon. Am. J. Clin. Nutr., 46, 456–60.Google Scholar
  56. Kien, C.L., Heitlinger, L.A., Li, U.L. and Murray, R.D. (1989) Digestion, absorption, and fermentation of carbohydrates. Semin, Perinat., 13, 78–87.Google Scholar
  57. Kien, C.L., Kepner, J., Grotjohn, K.A., et al. (1992) Efficient assimilation of lactose carbon in premature infants. J. Pediatr. Gastroenterol. Nutr., 15, 253–8.Google Scholar
  58. Kilara, A. and Shahani, K.M. (1976) Lactase activity of cultured and acidified dairy products. J. Dairy Sci., 59, 2031–5.Google Scholar
  59. Kim, H.S. and Gilliland, S.E. (1983) Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. J. Dairy Sci., 66, 959–66.Google Scholar
  60. Kinoshita, J.H. (1965) Cataracts in galactosemia. Invest. Ophthalmol., 4, 786–99.Google Scholar
  61. Kinoshita, J.H., Merola, L.O., Satoh, K. and Dikmak, E. (1962) Osmotic changes caused by the accumulation of dulcitol in the lenses of rats fed with galactose. Nature, 194, 1085–7.Google Scholar
  62. Kobayashi, A., Kawai, S., Ohbe, Y. and Nagashima, Y. (1975) Effects of dietary lactose and a lactase preparation on the intestinal absorption of calcium and magnesium in normal infants. Am. J. Clin. Nutr., 28, 681–3.Google Scholar
  63. Kocian, J., Skala, I. and Bakos, K. (1973) Calcium absorption from milk and lactose-free milk in healthy subjects and patients with lactose intolerance. Digestion, 9, 317–24.Google Scholar
  64. Kolars, J.C., Levitt, M.D., Aouji, M. and Savaiano, D.A. (1984) Yogurt: an autodigesting source of lactose. N. Engl. J. Med., 310, 1–3.Google Scholar
  65. Lee, C.M. and Hardy, C.M. (1989) Cocoa feeding and human lactose intolerance. Am. J. Clin. Nutr., 49, 840–4.Google Scholar
  66. Leichter, J. (1973) Comparison of whole milk and skim milk with aqueous lactose solution in lactose tolerance testing. Am. J. Clin. Nutr., 26, 393–6.Google Scholar
  67. Lengemann, F.W. (1959) The site of action of lactose in the enhancement of calcium utilization. J. Nutr., 69, 23–7.Google Scholar
  68. Levitt, M.D. and Donaldson, R.M. (1970) Use of respiratory hydrogen (H2) excretion to detect carbohydrate malabsorption. J. Lab. Clin. Med., 75, 937–45.Google Scholar
  69. Levitt, M.D., Bond, J.H. and Levitt, D.G. (1981) Gastrointestinal gas, in Physiology of the Gastrointestinal Tract, ( L.R. Johnson, ed.), Raven Press Ltd., New York, pp. 1301–16.Google Scholar
  70. Lin, M.Y., Savaiano, D.A. and Harlander, S.K. (1991) Influence of nonfermented dairy products containing starter cultures on lactose maldigestion in humans. J. Dairy Sci., 74, 87–95.Google Scholar
  71. Lin, M.Y., DiPalma, J.A., Martini, M.C., et al. (1993) Comparative effects of exogenous lactase (ß-galactosidase) preparations on in vivo lactose digestion. Dig. Dis. Sci., 38, 2022–7.Google Scholar
  72. Lloyd, M.L. (1993) The regulation of lactase expression in adult life in humans, in Common Food Intolerances 2: Milk in Human Nutrition and Adult-Type Hypolactasia, ( S. Auricchio, G. Semenza, eds.), Karger, Basel, pp. 124–31.Google Scholar
  73. Long, S.S. and Swenson, R.M. (1977) Development of anaerobic fecal flora in healthy newborn infants. J. Pediatr., 91, 298–301.Google Scholar
  74. Macfarlane, G.T. and Cummings, J.H. (1991) The colonic flora, fermentation, and large bowel digestive function, in The Large Intestine: Physiology, Pathophysiology and Disease, ( S.F. Phillips, J.H. Pemberton and R.G. Shorter, eds.), Raven Press, New York, pp. 51–91.Google Scholar
  75. Mahoney, R.R. (1985) Modification of lactose and lactose-containing dairy products with 13-galactosidase, in Developments in Dairy Chemistry 3: Lactose and Minor Constituents, ( P.F. Fox, ed.), Elsevier Applied Science Publishers, London, pp. 69–109.Google Scholar
  76. Mainguet, P., Faille, I., Destrebecq, L., et al. (1991) Lactose intolerance, calcium intake, and osteopenis. Lancet, 338, 1156–7.Google Scholar
  77. Maiuri, L., Rossi, M., Raia, V., et al. (1993) Lactase activity of the enterocytes of human proximal jejunum with adult-type hypolactasia, in Common Food Intolerances 2: Milk in Human Nutrition and Adult-Type Hypolactasia, ( S. Auricchio and G. Semenza, eds.) Karger, Basel, pp. 161–7.Google Scholar
  78. Mantei, N., Villa, M., Enzler, T., et al. (1988) Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring, and evolution of the enzyme. EMBO J., 7, 2705–13.Google Scholar
  79. Martini, M.C. and Savaiano, D.A. (1988) Reduced intolerance symptoms from lactose consumed during a meal. Am. J. Clin. Nutr., 47, 57–60.Google Scholar
  80. Martini, M.C., Bolwegg, G.L., Levitt, M.D. and Savaiano, D.A. (1987) Lactose digestion by yogurt 13-galactosidase: influence of pH and microbial cell integrity. Am. J. Clin. Nutr., 45, 432–6.Google Scholar
  81. Mata, L.J., Mejicanos, M.L. and Jimenez, F. (1972) Studies on the indigenous gastrointestinal flora of Guatemalan children. Am. J. Clin. Nutr., 25, 1380–90.Google Scholar
  82. McDonough, F.E., Hitchins, A.D., Wong, N.P., et al. (1987) Modification of sweet acidophilus milk to improve utilization by lactose-intolerant persons. Am. J. Clin. Nutr., 45, 570–4.Google Scholar
  83. Mevissen-Verhage, E.A.E., Marcelis, J.H., de Vos, M.N., et al. (1987) Bifidobacterium, Bacteroides, and Clostridum sp. in fecal samples from breast-fed and bottle-fed infants with and without iron supplement. J. Clin. Microbiol., 25, 285–9.Google Scholar
  84. Morishita, Y. and Shiromizu, K. (1987) Effects of dietary lactose and purified diet on intestinal microflora of rats. Japan J. Med. Sci. Biol., 40, 15–26.Google Scholar
  85. Morrissey, P.A. (1985) Lactose: chemical and physiochemical properties, in Developments in Dairy Chemistry 3: Lactose and Minor Constituents, ( P.F. Fox, ed.), Elsevier Applied Science Publishers, London, pp. 1–34.Google Scholar
  86. Murray R.D., Boutton, T.W. Klien, P.D., et al. (1990) Comparative absorption of [1 C] lactose by premature infants. Am. J. Clin. Nutr., 51, 59–66.Google Scholar
  87. Newcomer, A.D., McGill, D.B., Thomas, P.J. and Hofmann, A.F. (1975) Prospective comparison of indirect methods for detecting lactase deficiency. N. Engl. J. Med., 293, 1232–5.Google Scholar
  88. Newcomer, A.D., Hodgson, S.F., McGill, D.B. and Thomas, P.J. (1978) Lactase deficiency: prevalence in osteoporosis. Ann. Intern. Med., 89, 218–20.Google Scholar
  89. Newcomer, A.D., Park, H.S., O’Brien, P.C. and McGill, D.B. (1983) Response of patients with irritable bowel syndrome and lactase deficiency using unfermented acidophilus milk. Am. J. Clin. Nutr., 38, 257–63.Google Scholar
  90. Ng, W.G., Donnel, G.N. and Bergren, W.R. (1965) Galactokinase activity in human erythrocytes of individuals at different ages. J. Lab. Clin. Med., 66, 115–21.Google Scholar
  91. Nickerson, T.A. (1974) Lactose, in Fundamentals of Dairy Chemistry, 2nd edn., ( B.H. Webb, A.H. Johnson and J.A. Alford, eds.), AVI Publishing Co., Inc., Westport, pp. 273–324.Google Scholar
  92. Nickerson, T.A. (1978) Why use lactose and its derivatives in food? Food Technol., 32 (1), 40–6.Google Scholar
  93. Nielsen, O.H., Schiotz, P.O., Rasmussen, S.N. and Krasilnikoff, P. (1984) Calcium absorption and acceptance of lactose milk among children with primary lactase deficiency. J. Pediatr. Gastroenterol. Nutr., 3, 219–23.Google Scholar
  94. Paige, D.M., Bayless, T.M., Ferry, G.D. and Graham, G.G. (1971) Lactose malabsorption and milk rejection in Negro children. Johns Hopkins Med. J., 129, 163–9.Google Scholar
  95. Paige, D.M., Bayless, T.M., Huang, S.S. and Wexter, R. (1975) Lactose hydrolzyed milk. Am. J. Clin. Nutr., 28, 818–22.Google Scholar
  96. Payne, D.L., Welsh, J.D., Manion, C.V., et al. (1981) Effectiveness of milk products in dietary management of lactose malabsorption. Am. J. Clin. Nutr., 34, 2711–15.Google Scholar
  97. Perman, J.A., Modler, S. and Olson, A.C. (1981) Role of pH in production of hydrogen from carbohydrates by colonic bacterial flora: studies in vivo and in vitro. J. Clin. Invest., 67, 643–50.Google Scholar
  98. Pilson, M.E.Q. and Kelly, A.L. (1962) Composition of the milk from Zalophilus californianus, the California sea lion. Science, 135, 104–5.Google Scholar
  99. Pirk, F. and Skala, I. (1972) Functional response of the digestive tract to the ingestion of milk in subjects suffering from lactose intolerance. Digestion, 5, 89–99.Google Scholar
  100. Pochart, P., Dewitt, O., Desjeux, J.F. and Bourlioux, P. (1989) Viable starter culture, ß-galactosidase activity, and lactose in duodenum after yogurt ingestion in lactase-deficient humans. Am. J. Clin. Nutr., 49, 828–31.Google Scholar
  101. Posati, L.P. and Orr, LL. (1971) Composition of foods: dairy and egg products raw, processed, prepared, in USDA Handbook no. 8–1, revised, US Gov. Printing Office, Washington, DC.Google Scholar
  102. Potter, N.N. (1986) Milk and milk products, in Food Science, AVI Publishing Co., Westport, CT, pp. 348–89.Google Scholar
  103. Protein Advisory Group (1972) Low lactase activity and milk intake. PAG Bull., 2, 9–10.Google Scholar
  104. Recker, R.R., Bammi, A., Barger-Lux, M.J. and Heaney, R.P. (1988) Calcium absorbability from milk products, an imitation milk, and calcium carbonate. Am. J. Clin. Nutr., 47, 93–5.Google Scholar
  105. Repelius, C. (1983) Technological production of lactase and lactose-hydrolyzed milk, in Milk Intolerances and Rejection, ( J. Delmont, ed.), Karger, Basel, pp. 57–62.Google Scholar
  106. Roediger, W.E.W. (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 21, 793–8.Google Scholar
  107. Rossi, M., Maiuri, L., Fusco, M.I., et al. (1993) The human adult-type hypolactasia is a heterogeneous condition in in vivo biosynthetic studies, in Common Food Intolerances 2: Milk in Human Nutrition and Adult-Type Hypolactasia, ( S. Auricchio and G. Semenza, eds.), Karger, Basel, pp. 147–87.Google Scholar
  108. Sardharwalla, I.B. and Wraith, J.E. (1987) Galactosemia. Nutr. Health, 5, 175–88.Google Scholar
  109. Sasaki, Y., Iio, M., Kameda, H., et al. (1970) Measurement of i4C-lactose absorption in the diagnosis of lactase deficiency. J. Lab. Clin. Med., 76, 824–35.Google Scholar
  110. Sato, R., Noguchi, T. and Naito, H. (1986) Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. J. Nutr. Sci. Vitaminol., 32, 67–76.Google Scholar
  111. Savaiano, D.A. and Levitt, M.D. (1987) Milk intolerance and microbe-containing dairy foods. J. Dairy Sci., 70, 397–406.Google Scholar
  112. Savaiano, D.A., Elanour, A.A., Smith, D.E. and Levitt, M.D. (1984) Lactose malabsorption from yogurt, pasteurized yogurt, sweet acidophilus milk, and cultured milk in lactase-deficient individuals. Am. J. Clin. Nutr., 40, 1219–23.Google Scholar
  113. Scrimshaw, N.S. and Murray, E.B. (1988a) The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance: lactose content of milk and milk products. Am. J. Clin. Nutr., 48, 1099–104.Google Scholar
  114. Scrimshaw, N.S. and Murray, E.B. (1988b) The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance: adaptation of lactose-maldigesting individuals to milk and milk products. Am. J. Clin. Nutr., 48, 1118–19.Google Scholar
  115. Segal, S. (1983) Disorders of galactose metabolism, in The Metabolic Basis of Inherited Disease, ( J.B. Stanbury, ed.), McGraw Hill, New York, pp. 167–91.Google Scholar
  116. Sheikh, M.S., Santa Ana, C.A., Nicar, M.J. et al. (1987) Gastrointestinal absorption of calcium from milk and calcium salts. N. Engl. J. Med., 317, 532–6.Google Scholar
  117. Simon, G.L. and Gorbach, S.L. (1984) Intestinal flora in health and disease. Gastroenterology, 86, 174–93.Google Scholar
  118. Simon, G.L. and Gorbach, S.L. (1986) The human intestinal microflora. Dig. Dis. Sci., 31, 147S–162S.Google Scholar
  119. Simoons, E.J. (1980) The geographic hypothesis and lactose malabsorption. A weighing of the evidence. Dig. Dis. Sci., 23, 963–80.Google Scholar
  120. Skalka, H.W. and Prchal, J.T. (1980) Presenile cataract formation and decreased activity of galactosemic enzymes. Arch. Ophthalmol., 98, 269–73.Google Scholar
  121. Smith, T.M., Kolars, J.C., Savaiano, D.A. and Levitt, M.D. (1985) Absorption of calcium from milk and yogurt. Am. J. Clin. Nutr., 42, 1197–200.Google Scholar
  122. Solomons, N.W., Garcia-Ibanez, R. and Viteri, F. (1979) Reduced rate of breath hydrogen excretion with lactose tolerance tests in young children. Am. J. Clin. Nutr., 32, 783–6.Google Scholar
  123. Solomons, N.W., Guerrero, A.M. and Torun, B. (1985a) Dietary manipulation of postprandial colonic fermentation: 1. Effect of solid foods in a meal. Am. J. Clin. Nutr., 41, 199–208.Google Scholar
  124. Solomons, N.W., Guerrero, A.M. and Torun, B. (1985b). Effective in vivo hydrolysis of milk lactose by beta-galactosidases in the presence of solid foods. Am. J. Clin. Nutr., 41, 222–7.Google Scholar
  125. Stark, P.L. and Lee, A. (1982) The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J. Med. Microbiol., 15, 189–203.Google Scholar
  126. Swallow, D.M. and Harvey, C.B. (1993) Genetics of adult-type hypolactasia, in Common Food Intolerances 2: Milk in Human Nutrition and Adult-Type Hypolactasia, ( S. Auricchio and G. Semenza, eds.), Karger, Basel, pp. 85–92.Google Scholar
  127. Terada, A., Hara, H., Kataoka, M. and Mitsuoka, T. (1992) Effect of lactulose on the composition and metabolic activity of the human fecal flora. Microbiol. Ecol. Health Dis., 5, 43–50.Google Scholar
  128. Thacker, P.A., Salomons M.D. and Aherne F.X. (1981) Influence of propionic acid on the cholesterol metabolism of pig fed hypercholesterolimic diets. Can. J. Ani. Sci., 61, 969–75.Google Scholar
  129. Tomatsu, H. (1994) Health effects of oligosaccharides. Food Technol., 48 (10), 61–5.Google Scholar
  130. Tremaine, W.J., McGill, D.B., Newcomer, A.D. and Riggs, B.L. (1986) Calcium absorption from milk in lactase-deficient and lactase-sufficient adults. Dig. Dis. Sci., 31, 376–8.Google Scholar
  131. Heyningen, R. (1959) Formation of polyols by the lens of the rat with “sugar” cataracts. Nature, 184, 194–5.Google Scholar
  132. Welsh, J.D. and Hall, W.H. (1977) Gastric emptying of lactose and milk in subjects with lactose malabsorption. Am. J. Dig. Dis., 22, 1060–3.Google Scholar
  133. Wheadon, M., Goulding, A., Barbezat, G.O. and Campbell, A.J. (1991) Lactose malabsorption and calcium intake as risk factors for osteoporosis in elderly New Zealand women. N.Z. Med. J., 9, 417–19.Google Scholar
  134. Wolever, T.M.S., Brighenti, F., Royall, D., et al. (1989) Effect of rectal infusion of short-chain fatty acids in human subjects. Am. J. Gastroenterol., 84, 1027–33.Google Scholar
  135. Ziegler, E.E. and Fomon, S.J. (1983) Lactose enhances mineral absorption in infancy. J. Pediatr. Gastroenterol. Nutr., 2, 288–94.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • A. Mustapha
  • S. R. Hertzler
  • D. A. Savaiano

There are no affiliations available

Personalised recommendations