Advertisement

Actomyosin-Like Protein in Brain

Abstract

Two general categories of ATPases are present in tissue. One group requires Na+ and K+ as well as Mg2+ for maximum enzyme activity and functions in active transport of Na + , K + , and other substances across cell membranes. The second group of ATPases requires Mg2+ or Ca2+ for activation. The biochemical and physiological significances of the Mg2+-Ca2 +-activated enzyme systems are less understood. The one major protein system activated by Mg2+ or Ca2+ which has received extensive study is the actomyosin complex; in this system the hydrolysis of ATP stimulated by divalent cations plays an essential role in muscle contraction and relaxation.

Keywords

ATPase Activity Muscle Actin Sucrose Gradient Relative Viscosity Bovine Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A., 1966, A simple method for isolation of nerve-ending particles from rat brain, Biochim. Biophys. Acta 121: 403–406.PubMedGoogle Scholar
  2. Adelman, M. R., and Taylor, E. W., 1969a, Isolation of an actomyosin-like protein complex from slime mold Plasmodium and the separation of the complex into actin- and myosin- like fractions, Biochemistry 8: 4964–4975.PubMedGoogle Scholar
  3. Adelman, M. R., and Taylor, E. W., 1969b, Further purification and characterization of slime mold myosin and slime mold actin, Biochemistry 8: 4976–4988.PubMedGoogle Scholar
  4. Aldridge, D. C, Armstrong, J. J., Speake, R. N., and Turner, W. B., 1967, The structure of cytochalasins A and B, J. Chem. Soc. 1967(C): 1667–1676.Google Scholar
  5. Arcos, J. C, Stacey, R. E., Mathison, J. B., and Argus, M. F., 1967, Kinetic parameters of mitochondria swelling, Exp. Cell Research 48: 448–460.Google Scholar
  6. Asatoor, A. M., and Armstrong, M. D., 1967, 3-methylhistidine, a component of actin, Biochem. Biophys. Res. Comm. 26: 168–174.PubMedGoogle Scholar
  7. Bárány, M., and Jaisle, F., 1960, Kontraktioniszklus und interaktion zwischen aktin und l- myosin unter der Wirkung spezifische interaktions—inhibitoren, Biochim. Biophys. Acta 41: 192–203.PubMedGoogle Scholar
  8. Bárány, M., Bárány, K., Gaetjens, E., and Bailin, G., 1966, Chicken gizzard myosin, Arch. Biochem. Biophys. 113: 205–221.PubMedGoogle Scholar
  9. Bárány, M., Nagy, B., Finkelman, F., and Chrambach, A., 1961, Studies on the removal of the bound nucleotide of actin, J. Biol. Chem. 236: 2917–2925.PubMedGoogle Scholar
  10. Benitez, H. H., Murray, M. R., and Wooley, D. W., 1955, Effects of serotonin and certain of its antagonists upon oligodendroglial cells in vitro, Proceedings Second International Congress Neuropathology, Pt II, 423–428, Exerpta Medica Foundation.Google Scholar
  11. Bed, S., and Puszkin, S., 1970, Mg2+-Ca2 +-activated adenosine triphosphatase system isolated from mammalian brain, Biochemistry 9: 2058–2067.Google Scholar
  12. Berl, S., Puszkin, S., and Nicklas, W. J., 1973, Actomyosin-like protein in brain, Science 179: 441–446.PubMedGoogle Scholar
  13. Bettex-Galland, M., and Luscher, E. F., 1960, Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20: 1–35.Google Scholar
  14. Boullin, D. J., 1967, The action of extracellular cations on the release of the sympathetic transmitter from peripheral nerves, J. Physiol. (London) 189: 85–99.Google Scholar
  15. Bowler, K., and Duncan, C, 1967, Studies on the actomyosinlike membranes preparation from crayfish nerve cord, Comp. Biochem. Physiol. 20: 543–551.PubMedGoogle Scholar
  16. Bowler, K., and Duncan, C, 1968, The temperature characteristics of the ATPases from a frog brain microsomal preparation, Comp. Biochem. Physiol. 24: 223–227.PubMedGoogle Scholar
  17. Bray, D., 1973, Model for membrane movements in the neural growth cone, Nature 244: 93–96.PubMedGoogle Scholar
  18. Carsten, M. E., 1971, Uterine smooth muscle : Troponin, Arch. Biochem. Biophys. 147: 353–357.PubMedGoogle Scholar
  19. Carsten, M. E., and Mommaerts, W. F. H. M., 1963, A study of actin by means of starch gel electrophoresis, Biochemistry 2: 28–32.PubMedGoogle Scholar
  20. Chang, C-M., and Goldman, R. D., 1973, The localization of actinlike fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding, J. Cell Biol. 57: 867–874.PubMedGoogle Scholar
  21. Clark, J. B., and Nicklas, W. J., 1970, The preparation of rat brain mitochondria. Preparation and characterization, J. Biol. Chem. 245: 4724–4731.PubMedGoogle Scholar
  22. Clark, A. W., Hurlbut, W. P., and Mauro, A., 1972, Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom, J. Cell. Biol. 52: 1–14.PubMedGoogle Scholar
  23. Cohen, I., and Cohen, C. J., 1972, A tropomyosinlike protein from human platelets, J. Mol. Biol. 68: 383–387.PubMedGoogle Scholar
  24. Conover, T. E., and Bârâny, M., 1966, The absence of a myosin-like protein in liver mitochondria, Biochim. Biophys. Acta 127: 235–238.PubMedGoogle Scholar
  25. De Robertis, E., Alberici, M., Rodriguez De Lores Arnaiz, G., and Azcurra, J. M., 1966, Isolation of different types of synaptic membranes from the brain cortex, Life Sci. 5: 577–582.PubMedGoogle Scholar
  26. Douglas, W. W., 1965, Calcium dependent links in stimulus-secretion coupling in the adrenal medulla and neurohypophysis, Int. Wenner-Gren Symposium, Stockholm, pp. 267–290, Pergamon Press, London.Google Scholar
  27. Douglas, W. W., 1968, The First Gaddum Memorial Lecture. Stimulus-secretion coupling. The concept and clues from chromaffin and other cells, Brit. J. Pharmacol. 34: 451–474.Google Scholar
  28. Douglass, W. W., and Sorimachi, M., 1972, Affects of cytochalasin B and colchicine on secretion of posterior pituitary and adrenal medullary hormones, Brit. J. Pharmacol. 45: 143–144P.Google Scholar
  29. Elzinga, M., 1970, Amino acid sequence studies on rabbit skeletal muscle actin. Cyanogen bromide cleavage of the protein and determination of the sequence of seven of the resulting peptides, Biochemistry 9: 1365–1374.PubMedGoogle Scholar
  30. Filo, R. S., Ruegg, J. C, and Bohr, D. F., 1963, Actomyosin-like protein of arterial wall, Amer. J. Physiol. 205: 1247–1252.PubMedGoogle Scholar
  31. Fine, R. E., and Bray, D., 1971, Actin in growing nerve cells, Nature New Biol. 234: 115–118.PubMedGoogle Scholar
  32. Fine, R. E., Blitz, A. L., Hitchcock, S. E., and Kaminer, B., 1973, Tropomyosin in brain and growing neurones, Nature New Biol. 245: 182–186.PubMedGoogle Scholar
  33. Gergely, J., 1964, in Biochemistry of Muscle Contraction (J. Gergely, ed.), p. 119, Little, Brown and Co., Boston, Mass.Google Scholar
  34. Germain, M., and Proulx, P., 1965, Adenosine triphosphatase activity in synaptic vesicles of rat brain, Biochem. Pharm. 14: 1815–1819.PubMedGoogle Scholar
  35. Hanson, J. P., Repke, D. I., Katz, A. M., and Aledort, L. M., 1972, A troponin-tropomyosin- like Ca++-sensitizing system in human platelets, Int. Soc. Thrombosis and Haemostasis. Illrd Congress, Washington, D.C. (Abstracts), p. 200.Google Scholar
  36. Hartshorne, D. J., and Mueller, H., 1967, Separation and recombination of the ethylene glycol bis (β-aminoethyl ether)-N, N 1-tetraacetic acid-sensitizing factor obtained from a low ionic strength extract of natural actomyosin, J. Biol. Chem. 242: 3089–3092.PubMedGoogle Scholar
  37. Hess, H.H., and Pope, A., 1959, Intralaminar distribution of adenosine triphosphatase activity in rat cerebral cortex, J. Neurochem., 3: 287–299.PubMedGoogle Scholar
  38. Hess, H.H., and Pope, A., 1961, Intralaminar distribution of adenosine triphosphatase activity in human frontal isocortex, J. Neurochem.,8: 299–309.PubMedGoogle Scholar
  39. Hoffman-Berling, H., 1956, Das kontraktile eiweiss undifferenzierter zellen, Biochim. Biophys. Acta 19: 453–463.Google Scholar
  40. Hosie, R. J., 1965, The localization of adenosine triphosphatase in morphologically characterized subcellular fractions of guinea-pig brain, Biochem. J. 96: 404–412.PubMedGoogle Scholar
  41. Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell. Biol. 43: 312–328.PubMedGoogle Scholar
  42. Johnson, P., and Perry, S. V., 1970, Biological activity and 3-methylhistidine content of actin and myosin, Biochem. J. 119: 293–298.PubMedGoogle Scholar
  43. Kadota, K., Mori, S., and Imaizumi, R., 1967, The properties of ATPase of synaptic vesicle fraction, J. Biochem. 61: 424–432.PubMedGoogle Scholar
  44. Kaminer, B., and Szonyi, E., 1972, Tropomyosin in electric organ of eel and torpedo, J. Cell Biol. 55: 129a.Google Scholar
  45. Katz, B., and Miledi, R., 1967a, The timing of calcium action during neuromuscular transmission, J. Physiol. (London) 189: 535–544.Google Scholar
  46. Katz, B., and Miledi, R., 1967b, The release of acetylcholine from nerve endings by graded electric pulses, Proc. Roy. Soc. B167: 23–38.Google Scholar
  47. Kendrick-Jones, J., Lehman, W., and Szent-Gyorgyi, A. G., 1970, Regulation in molluscan muscles, J. Mol. Biol. 54: 313–326.PubMedGoogle Scholar
  48. Kirpekar, S. M., and Misu, Y., 1967, Release of noradrenaline by splenic nerve stimulation and its dependence on calcium, J. Physiol. (London) 189: 219–234.Google Scholar
  49. Kuehl, W. M., and Gergely, J., 1969, The kinetics of exchange of adenosine triphosphate and calcium with G-Actin, J. Biol. Chem. 244: 4720–4729.PubMedGoogle Scholar
  50. Lewin, E., and Hess, H. H., 1964, Intralaminar distribution of Na-K ATPase in rat cortex, J. Neurochem. 11: 473–481.PubMedGoogle Scholar
  51. Libet, B., 1948, Adenosinetriphosphatase (ATPase) in nerve, Fed. Proc. 7: 72.PubMedGoogle Scholar
  52. Lin, S., Santi, D. V., and Spudich, J. A., 1974, Biochemical studies on the mode of action of cytochalasin B, J. Biol. Chem. 249: 2268–2274.PubMedGoogle Scholar
  53. Mahendran, C., Nicklas, W. J., and Berl, S., 1974, Evidence for calcium-sensitive component in brain actomyosin-like protein (neurostenin), J. Neurochem. 23: 497–501.PubMedGoogle Scholar
  54. Malaisse, W. J., Malaisse-Lagae, F., Walker, M. O., and Lacy, P. E., 1971, The stimulussecretion coupling of glucose-induced insulin release, Diabetes 20: 257–265.PubMedGoogle Scholar
  55. Manasek, F. J., Burnside, B., Stroman, J., 1972, The sensitivity of developing cardiac myofibrils to cytochalasin B, Proc. Nat. Acad. Sci. (U.S.) 69: 302–312.Google Scholar
  56. Martonosi, A., and Gouvea, M. A., 1961, Studies on actin. VI. The interaction of nucleoside triphosphates with actin, J. Biol. Chem. 236: 1345–1352.PubMedGoogle Scholar
  57. Martonosi, A., Gouvea, M. A., and Gergely, J., 1960, Studies on actin. I. The interaction of [C14]-labeled adenosine nucleotide with actin, J. Biol. Chem. 235: 1700–1706.PubMedGoogle Scholar
  58. Naidoo, D., and Pratt, O. E., 1956, The effect of magnesium and calcium ions on adenosine triphosphatase in the nervous and vascular tissues of the brain, Biochem. J. 62: 465–469.PubMedGoogle Scholar
  59. Needham, D., 1960, in Structure and Function of Muscle (G. H. Bourne, ed.), Vol. 2, p. 72, Academic Press, New York.Google Scholar
  60. Needham, D., and Williams, J. M., 1963, Proteins of the uterine contractile mechanism, Biochem. 7.89: 552–560.Google Scholar
  61. Neifakh, S. A., and Kazakova, T. B., 1963, Actomyosin-like protein in mitochondria of the mouse liver, Nature 197: 1106–1107.PubMedGoogle Scholar
  62. Nicklas, W. J., and Bed, S., 1974, Effects of cytochalasin B on uptake and release of putative transmitters by synaptosomes and on brain actomyosin-like protein, Nature 247: 471–473.PubMedGoogle Scholar
  63. Nicklas, W. J., Puszkin, S., and Bed, S., 1973, Effect of vinblastine and colchicine on uptake and release of putative transmitters by synaptosomes and on brain actomyosinlike protein, J. Neurochem. 20: 109–121.PubMedGoogle Scholar
  64. Novakoff, A. B., 1967, Enzyme localization and ultrastructure of neurones, in The Neurone (H. Hyden, ed.), pp. 255–318, Elsevier, Amsterdam.Google Scholar
  65. Ohnishi, T., and Ohnishi, T., 1962, Extraction of contractile protein from liver mitochondria, J. Biochem. (Tokyo) 51: 380–381.Google Scholar
  66. Perry, S. V., and Grey, T. C, 1956, A study of the effects of substrate concentration and certain relaxing factors on the magnesium-activated myofibrillar adenosine triphosphatase, Biochem. 7.64: 184–192.Google Scholar
  67. Poglazov, B. F., 1966, Structure and Functions of Contractile Proteins (Poglazov, B. F., ed.), p. 69, Academic Press, New York.Google Scholar
  68. Poisner, A. M., and Bernstein, J., 1971, A possible role of microtubules in catecholamine release from the adrenal medulla: Effect of colchicine, vinca alkaloids and deuterium oxide, J. Pharm. Exptl. Ther. 177: 102–108.Google Scholar
  69. Pollard, T. D., and Korn, E., 1972, The “contractile” proteins of Acanthamoeba castellanii, in Cold Spring Harbor Symposia on Quantitative Biology, Vol. XXXVII, pp. 573–583.Google Scholar
  70. Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, CRC Critical Reviews in Biochemistry, January, 1–65.Google Scholar
  71. Pomerat, C. M., Handelman, W. J., and Raiborn, C. W., Jr., 1967, Dynamic activities of nervous tissue in vitro, in The Neurone (H. Hyden, ed.), pp. 119–178, Elsevier, Amsterdam.Google Scholar
  72. Portzehl, H., Schramm, G., and Weber, H.H., 1950, Aktomyosin und seine komponenten, I. Mitt., Z. Naturforsch. 5B: 61–74.Google Scholar
  73. Puszkin, S., and Bed, S., 1972, Actomyosin-like protein from brain: Separation and characterization of the actin-like component, Biochim. Biophys. Acta 256: 695–709.PubMedGoogle Scholar
  74. Puszkin, S., Bed, S., Puszkin, E., and Clarke, D. C, 1968, Actomyosin-like protein isolated from mammalian brain, Science 161: 170–171.PubMedGoogle Scholar
  75. Puszkin, S., Nicklas, W. J., and Bed, S., 1972, Actomyosin-like protein in brain: Subcellular distribution, J. Neurochem. 19: 1319–1333.PubMedGoogle Scholar
  76. Puszkin, E., Puszkin, S., Lo, L. W., and Tanenbaum, S. W., 1973, Binding of cytochalasin D to platelet and muscle myosin, J. Biol. Chem. 248: 7754–7761.PubMedGoogle Scholar
  77. Rees, M. K., and Young, M., 1967, Studies on the isolation and molecular properties of homogeneous globular actin, J. Biol. Chem. 242: 4449–4458.PubMedGoogle Scholar
  78. Richards, E. G., Chung, C. S., Menzel, D. B., and Olcott, H. S., 1967, Chromatography of myosin on diethylaminoethylsephadex A-50, Biochemistry 6: 528–540.PubMedGoogle Scholar
  79. Schmitt, F. O., 1968, The molecular biology of neuronal fibrous proteins, Neurosciences Res. Prog. Bull., Vol. 6, No. 2, pp. 119–144.Google Scholar
  80. Schofield, J. G., 1971, Cytochalasin B and release of growth hormone, Nature New Biol. 234: 215–216.PubMedGoogle Scholar
  81. Shibata, N., Tatsumi, N., Tanaka, K., Okamura, Y., and Senda, N., 1972, A contractile protein possessing Ca2 +-sensitivity (natural actomyosin) from leucocytes, Biochim. Biophys. Acta 256: 565–576.PubMedGoogle Scholar
  82. Smith, A. D., DePotter, W. P., Moerman, E. J., and De Schaedryver, A. F., 1970, Release of dopamine β-hydroxylase and chromogranin A upon stimulation of the splenic nerve, Tissue Cell 2: 547–568.PubMedGoogle Scholar
  83. Sorimachi, M., Oesch, F., and Thoenen, H., 1973, Effects of colchicine and cytochalasin B on the release of 3H-norepinephrine from guinea-pig atria evoked by high potassium, nicotine and tyramine, Naunyn-Schmiederberg’s Arch. Pharmacol. 276: 1–12.Google Scholar
  84. Speidel, C. C, 1935, Studies of living nerves; phenomena of nerve irritation and recovery, degeneration and repair, J. Comp. Neurol. 61: 1–80.Google Scholar
  85. Spudich, J. A., 1972, Effects of cytochalasin B on actin filaments, Cold Spring Harbor Symposium on Quantitative Biology, Vol. XXXVII, pp. 585–593.Google Scholar
  86. Spudich, J. A., and Lin, S., 1972, Cytochalasin B, its interaction with actin and actomyosin from muscle, Proc. Nat. Acad. Sci. (U.S.) 69: 442–446.Google Scholar
  87. Stewart, J. M., and Levy, H. M., 1970, The role of the calcium-troponin-tropomyosin complex in the activation of contraction, J. Biol. Chem. 245: 5764–5772.PubMedGoogle Scholar
  88. Stossel, T. P., and Pollard, T. D., 1973, Myosin in polymorphonuclear leukocytes, J. Biol. Chem. 248: 8288–8294.PubMedGoogle Scholar
  89. Strohman, R. C, and Samorodin, J., 1962, The requirements for adenosine triphosphate binding to globular actin, J. Biol. Chem. 237: 363–370.PubMedGoogle Scholar
  90. Szent-Gyorgyi, A., 1951a, Chemistry of Muscle Contraction, p. 151, Academic Press, New York.Google Scholar
  91. Szent-Gyorgyi, A., 1951b, Chemistry of Muscle Contraction, p. 34, Academic Press, New York.Google Scholar
  92. Szent-Gyorgyi, A. G., 1951a, The reversible depolymerization of actin by potassium iodide, Arch. Biochem. Biophys. 31: 97–103.PubMedGoogle Scholar
  93. Szent-Gyorgyi, A. G., 1951b, Anew method for the preparation of actin, J. Biol. Chem. 192: 361–369.PubMedGoogle Scholar
  94. Thoa, N. B., Wooten, G. F., Axelrod, J., and Kopin, I. J., 1972, Inhibition of release of dop-amine-β-hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine, or cytochalasin-B, Proc. Nat. Acad. Sci. (U.S.) 69: 520–522.Google Scholar
  95. Tonomura, Y., Tokura, S., and Sekiya, K., 1962, Binding of myosin A to F-actin, J. Biol. Chem. 237: 1074–1081.PubMedGoogle Scholar
  96. Weber, A., and Winicur, S., 1961, The role of calcium in the superprecipitation of actomyosin, J. Biol. Chem. 236: 3198–3202.PubMedGoogle Scholar
  97. Weihing, R. R., and Korn, E. D., 1971, Acanthamoeba actin : Isolation and properties, Biochemistry 10: 590–600.PubMedGoogle Scholar
  98. Weihing, R. R., and Korn, E. D., 1972, Acanthamoeba actin. Composition of the peptide that contains 3-methylhistidine and a peptide that contains N-methyllysine, Biochemistry 11: 1538–1543.PubMedGoogle Scholar
  99. Wessels, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Ludena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171: 135–143.Google Scholar
  100. Whittaker, V. P., and Sheridan, M. N., 1965, The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles, J. Neurochem. 12: 363–372.PubMedGoogle Scholar
  101. Williams, J. A., and Wolff, J., 1971, Cytochalasin B inhibits thyroid secretion, Biochem. Biophys. Res. Comm. 44: 422–425.PubMedGoogle Scholar
  102. Wilson, L., Bryan, J., Ruby, A., and Mazia, D., 1970, Precipitation of proteins by vinblastine and calcium ions, Proc. Nat. Acad. Sci. (U.S.) 66: 807–814.Google Scholar
  103. Yang, Y., and Perdue, J. R., 1972, Contractile proteins of cultured cells, J. Biol. Chem. 247: 4503–4509.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • S. Berl
    • 1
  1. 1.Department of NeurologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations