Advertisement

Global Behavior: The Wave Packet Structural Vacillation

  • Huijun Yang
Part of the Applied Mathematical Sciences book series (AMS, volume 85)

Abstract

In this chapter we further study the evolution of wave packet discussed in Chapter 3. In order to illustrate the global behavior of the evolution of the wave packet, we employ phase space and phase space diagrams The phase space considered here is the space consisting of local wave numbers. This phase space has been called the WKB phase space (Yang, 1988a,b,c).

Keywords

Wave Packet Basic Flow Structural Vacillation Global Behavior Barotropic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buzyna, G., Pfeffer, R.L., and Kung. R. (1984). Transition to geostrophic turbulence in a rotating differentially heated annulus of fluid. J. Fluid Mech. 145, 377 - 403.CrossRefGoogle Scholar
  2. Charney, J.G., and DeVore, J.G. (1979). Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 1205 - 1216.CrossRefGoogle Scholar
  3. Elberry, R.L. (1968). A high-rotating general circulation model experiment with cyclic time changes. Atmospheric Science Paper No. 134, Colorado State University, Fort CollinsGoogle Scholar
  4. Fultz, D., Long, R.R., Owens, G.V., Bohan, W., Kaylor, R., and Weil, J. (1959). Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Meteorol. Monogr. 21, American Meteorol. Soc., Boston.Google Scholar
  5. Gruber, A. (1975). The wave-number-frequency spectra of the 200 mb wind field in the tropics. J. Atmos. Sci. 32, 1283 - 1300.CrossRefGoogle Scholar
  6. Hart, J.E. (1979). Barotropic quasi-geostrophic flow over anisotropic mountains J. Atmos. Sci. 36, 1736 - 1746.CrossRefGoogle Scholar
  7. Hendon, H.H. (1986). Time-mean flow and variability in a nonlinear model of the atmosphere with orographic forcing. J. Atmos. Sci. 43, 433 - 448.CrossRefGoogle Scholar
  8. Hide, R. (1958). An experimental study of thermal convection in a rotating liquid. Phil. Trans. Roy. Soc. London A250, 441 - 478.CrossRefGoogle Scholar
  9. Karoly, D.J. (1983). Rossby wave propagation in a barotropic atmosphere. Dynamics Atmos. Oceans 7, 111-125.Google Scholar
  10. McGuirk, J.P., and Reiter, E.R. (1976). A vacillation in atmospheric energy parameters. J. Atmos. Sci. 33, 2079 - 2093.CrossRefGoogle Scholar
  11. Pfeffer, R.L., and Chiang, Y. (1967). Two kinds of vacillation in rotating laboratory experiments. Month. Weath. Rev. 95, 75 - 82.CrossRefGoogle Scholar
  12. Pfeffer, R.L., Buzyna, G., and Fowlis, W.W. (1974). Synoptic features and energetics of wave-amplitude vacillation in a rotating, differentially heated fluid. J. Atmos. Sci. 31, 622 - 645.CrossRefGoogle Scholar
  13. Pfeffer, R.L., Buzyna, G., and Kung, R. (1980a). Time-dependent modes of behavior of thermally driven rotating fluids. J. Atmos. Sci. 37, 2129 - 2149.CrossRefGoogle Scholar
  14. Pfeffer, R.L., Buzyna, G., and Kung, R. (1980b). Relationships among eddy fluxes of heat, eddy temperature variances and basic-state temperature parameters in thermal driven rotating fluids. J. Atmos. Sci. 37, 2577 - 2599.CrossRefGoogle Scholar
  15. Webster, P.J., and Keller, J.L. (1975). Atmospheric variations: Vacillations and index cycles. J. Atmos. Sci. 32, 1283 - 1300.CrossRefGoogle Scholar
  16. Yang, H. (1987). Evolution of a Rossby wave packet in barotropic flows with asymmetric basic flow, topography and 6-effect. J. Atmos. Sci. 44, 2267 - 2276.CrossRefGoogle Scholar
  17. Yang, H. (1988a). Global behavior of the evolution of a Rossby wave packet in barotropic flows on the earth’s 6-surface. J. Atmos. Sci. 45, 134 - 146.Google Scholar
  18. Yang, H. (1988b). Bifurcation properties of the evolution of a Rossby wave packet in barotropic basic flows on the earth’s 6-surface. J. Atmos. Sci. 45, 3667 - 3683.CrossRefGoogle Scholar
  19. Yang, H. (1988c). Secondary bifurcation of the evolution of a Rossby wave packet in barotropic flows on the earth’s 6-surface. J. Atmos. Sci. 45, 3684 - 3699.CrossRefGoogle Scholar
  20. Zeng, Q.-C. (1982). On the evolution and interaction of disturbances and zonal flow in rotating barotropic atmosphere. J. Meteorol. Soc. Japan 60, 24 - 31.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Huijun Yang
    • 1
  1. 1.Geophysical Fluid Dynamics InstituteThe Florida State UniversityTallahasseeUSA

Personalised recommendations