SO(10) Grand Unification

  • Rabindra N. Mohapatra
Part of the Graduate Texts in Contemporary Physics book series (GTCP)


The possibility of SO(10) as a grand unification group of the standard SU(2) L × U(1) Y × SU(3) c , was first noted by Georgi [1] and Fritzsch and Minkowski [1]. Unlike SU(5), SO(10) is a group of rank 5 with the extra diagonal generator of SO(10) being BL as in the left-right symmetric groups. The advantages of SO(10) over SU(5) grand unification are that:
  1. (a)

    only one 16-dimensional spinor representation of SO(10) has the right quantum numbers to accommodate all fermions (including the right-handed neutrino) of one generation;

  2. (b)

    the gauge interactions of SO(10) conserve parity thus making parity a part of a continuous symmetry: this has the advantage that it avoids the cosmological domain wall problem associated with parity symmetry breakdown; and

  3. (c)

    it is the minimal left-right symmetric grand unified model that gauges the BL symmetry and is the only other simple grand unification group that does not need mirror fermions [2]. The model does not have any global symmetries.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Georgi, in Particles and Fields (edited by C. E. Carlson), A.I.P., 1975; H. Fritzsch and P. Minkowski, Ann. Phys. 93, 193 (1975).Google Scholar
  2. [2]
    Y. Tosa and S. Okubo, Phys. Rev. D23, 2486 (1981).MathSciNetADSGoogle Scholar
  3. [3]
    R. N. Mohapatra and B. Sakita, Phys. Rev. D21, 1062 (1980).MathSciNetADSGoogle Scholar
  4. [4]
    F. Wilczek and A. Zee, Phys. Rev. D25, 553 (1982).ADSGoogle Scholar
  5. [5]
    M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity (edited by D. Freedman et al. North-Holland, Amsterdam, 1980;Google Scholar
  6. See also T. Yanagida, K.E.K. preprint, 1979;Google Scholar
  7. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).ADSCrossRefGoogle Scholar
  8. [5a]
    D. Chang and R. N. Mohapatra, Phys. Rev. D32, 1248 (1985).ADSGoogle Scholar
  9. [6]
    T. W. B. Kibble, G. Lazaridis, and Q. Shafi, Phys. Rev. D26, 435 (1982).ADSCrossRefGoogle Scholar
  10. [7]
    D. Chang, R. N. Mohapatra, and M. K. Panda, Phys. Rev. Lett. 52, 1072 (1984); Phys. Rev. D30, 1052 (1984).ADSGoogle Scholar
  11. [8]
    D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, and M. K. Parida, Phys. Rev. D31, 1718 (1985).ADSCrossRefGoogle Scholar
  12. [9]
    R. Robinett and J. L. Rosner, Phys. Rev. D25, 3036 (1982).ADSGoogle Scholar
  13. [10]
    Y. Tosa, G. C. Branco, and R. E. Marshak. Phys. Rev. D28, 1731 (1983).ADSGoogle Scholar
  14. [11]
    R. N. Mohapatra and G. Senjanovic, Phys. Rev. D27, 1601 (1983); F. del Aguila and L. Ibanez, Nucl. Phys. B177, 60 (1981).CrossRefGoogle Scholar
  15. [12]
    T. Rizzo and G. Senjanovic, Phys. Rev. D25, 235 (1982).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations