Advertisement

Left-Right Symmetric Models of Weak Interactions

  • Rabindra N. Mohapatra
Part of the Graduate Texts in Contemporary Physics book series (GTCP)

Abstract

While the standard electro-weak model, based on the spontaneously broken local symmetry SU(3) c × SU(2) L × U(1) Y , has been extremely successful in the description of low-energy weak phenomena, it leaves a lot of questions unanswered. One of the unsolved problems is understanding the origin of parity violation in low-energy physics. An interesting approach is to assume that the interaction Lagrangian (or dynamics) is intrinsically left-right symmetric, the asymmetry observed in nature (i.e., β-decay and μ-decay, etc.) arising from the vacuum being noninvariant under parity symmetry. Within the framework of gauge theories this idea has found its realization in the SU(2) L × SU(2) R × U(1) B -L models [1] constructed in 1973–1974. An important feature of this model is that, at low energies, it reproduces all the features of the SU(2) L × U(1) model, and as we move up in energies new effects associated with parity invariance of the Lagrangian (such as a second neutral Z-boson, right-handed charged currents, right-handed neutrino) are supposed to appear.

Keywords

Higgs Boson Weak Interaction Gauge Boson Yukawa Coupling Lepton Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974);ADSGoogle Scholar
  2. R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566, 2558 (1975);ADSGoogle Scholar
  3. G. Senjanovic and R. N. Mohapatra, Phys. Rev. D12, 1502 (1975).ADSGoogle Scholar
  4. [2]
    J. F. Wilkerson et al., Phys. Rev. Lett. 58, 2023 (1987);ADSCrossRefGoogle Scholar
  5. H. Kawakami et al., Phys. Lett. 187B, 198 (1987).Google Scholar
  6. [3]
    R. Davis, Jr., Neutrino ‘88 (edited by J. Schneps et al.), World Scientific, Singapore, 1988;Google Scholar
  7. K. K. Hirata, et al., Phys. Rev. Lett. 63, 16 (1989); 65, 1297, 1301 (1990).Google Scholar
  8. [4]
    R. N. Mohapatra and R. E. Marshak, Phys. Lett. 91B, 222 (1980);Google Scholar
  9. A. Davison, Phys. Rev. D20, 776 (1979).ADSGoogle Scholar
  10. [5]
    R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566 (1979).ADSGoogle Scholar
  11. [6]
    D. Chang, Nucl. Phys. B214, 435 (1983);ADSCrossRefGoogle Scholar
  12. G. Brano, J. M. Frere, and J. M. Gerard, Nucl. Phys. B221, 317 (1983).ADSCrossRefGoogle Scholar
  13. [7]
    D. Chang, R. N. Mohapatra, and M. K. Parida, Phys. Rev. Lett. 50,1072 (1984); Phys. Rev. D30, 1052 (1984).ADSCrossRefGoogle Scholar
  14. [8]
    R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); Phys. Rev. D23, 165 (1981).ADSGoogle Scholar
  15. [9]
    R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).CrossRefGoogle Scholar
  16. [10]
    V. Barger, E. Ma, and K. Whisnant, Phys. Rev. D26, 2378 (1982);ADSCrossRefGoogle Scholar
  17. I. Liede, J. Malampi, and M. Roos, Nucl. Phys. B146, 157 (1978);ADSCrossRefGoogle Scholar
  18. T. Rizzo and G. Senjanovic, Phys. Rev. D24, 704 (1981);ADSGoogle Scholar
  19. V. Barger, J. Hewett, and T. Rizzo, Phys. Rev. D42, 152 (1990).ADSGoogle Scholar
  20. [11]
    M. Gell-Mann, P. Ramand, and R. Slansky, in Supergravity (edited by D. Freedman et al.), North-Holland, Amsterdam, 1979; T. Yanagida, KEK lectures, 1979;Google Scholar
  21. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).ADSCrossRefGoogle Scholar
  22. [12]
    M. Gronau and S. Nussinov, Fermilab preprint, 1982;Google Scholar
  23. M. Gronau and R. Yahalom, Nucl. Phys. B236, 233 (184).Google Scholar
  24. [13]
    M. A. B. Beg, R. Budny, R. N. Mohapatra, and A. Sirlin, Phys. Rev. Lett. 38, 1252 (1977);ADSCrossRefGoogle Scholar
  25. For a subsequent extensive analysis see J. Maalampi, K. Mursula, and M. Roos, Nucl. Phys. B207, 233 (1982).ADSCrossRefGoogle Scholar
  26. [14]
    M. Roos et al., Phys. Lett. 111B, 1 (1982).Google Scholar
  27. [15]
    F. W. Koks and J. Vanklinken, Nucl. Phys. A272, 61 (1976).CrossRefGoogle Scholar
  28. [16]
    J. Carr et al., Phys. Rev. Lett. 51, 627 (1983);ADSCrossRefGoogle Scholar
  29. A. Jodidio et al., Phys. Rev. D34, 1967 (1986).ADSGoogle Scholar
  30. [17]
    F. Corriveau et al., Phys. Rev. D24, 2004 (1981); Phys. Lett. 129B, 260 (1983).ADSGoogle Scholar
  31. [18]
    T. Yamazaki et al., KEK preprint, 1983.Google Scholar
  32. [19]
    B. Holstein and S. Treiman, Phys. Rev. D16, 2369 (1977).ADSGoogle Scholar
  33. [20]
    D. Bryman, Talk at Mini-Conference on Low-Energy Tests of Conservation Law, 1983.Google Scholar
  34. [21]
    T. Yamazaki et al., KEK preprint, 1983.Google Scholar
  35. [22]
    I. I. Bigi and J. M. Frere, Phys. Lett. 110B, 255 (1982).Google Scholar
  36. [23]
    J. Donoghue and B. Holstein, Phys. Lett. 113B, 383 (1982).Google Scholar
  37. [24]
    G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).ADSCrossRefGoogle Scholar
  38. [25]
    Earliest use of vacuum saturation of short distance contribution to KL — Ks mass difference was byGoogle Scholar
  39. R. N. Mohapatra, J. S. Rao, and R. E. Marshak, Phys. Rev. 171, 1502 (1968);ADSCrossRefGoogle Scholar
  40. B. L. Ioffe and E. Shabalin, Soy. J. Nucl. Phys. 6, 328 (1967).Google Scholar
  41. [26]
    M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974).ADSCrossRefGoogle Scholar
  42. [27]
    See J. Trampetic, Phys. Rev. D27, 1565 (183) for a discussion of this point.Google Scholar
  43. [28]
    R. N. Mohapatra, G. Senjanovic, and M. Tran, Phys. Rev. D28, 546 (1983);ADSGoogle Scholar
  44. G. Ecker, W. Grimus, and H. Neufeld, Phys. Lett. 127B, 365 (1983);Google Scholar
  45. H. Harari and M. Leurer, Nucl. Phys. B223, 221 (1983);Google Scholar
  46. F. Gilman and M. Reno, Phys. Rev. D29, 937 (1974).Google Scholar
  47. [29]
    L. Wolfenstein, Nucl. Phys. B160, 1979 (1981);Google Scholar
  48. C. Hill, Phys. Lett. 97B, 275 (1980).Google Scholar
  49. [30]
    I. I. Bigi and J. M. Frere, Phys. Lett. 1106, 255 (1982);Google Scholar
  50. G. Ecker and W. Grimus, Nucl. Phys. B258, 328 (1985).ADSCrossRefGoogle Scholar
  51. [31]
    R. N. Mohapatra, F. E. Paige, and D. P. Sidhu, Phys. Rev. D17, 2642 (1978).Google Scholar
  52. [31a]
    R. Barbieri and R. N. Mohapatra, Phys. Rev. D39, 1229 (1989);ADSGoogle Scholar
  53. G. Raffelt, and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988).ADSCrossRefGoogle Scholar
  54. [3.
    lb] R. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987);Google Scholar
  55. K. Hirat et al., Phys. Rev. Lett. 58, 1490 (1987).ADSCrossRefGoogle Scholar
  56. [31c]
    R. N. Mohapatra, Phys. Rev. D34, 909 (1986).CrossRefGoogle Scholar
  57. [32]
    A. Datta and A. Raychaudhuri, Phys. Rev. D28, 1170 (1983);ADSGoogle Scholar
  58. F. Olness and M. E. Ebel, Phys. Rev. D30, 1034 (1984);ADSGoogle Scholar
  59. P. Langacker and S. Umashankar, Phys. Rev. D40, 1569 (1989).ADSGoogle Scholar
  60. [33]
    J. Gunion and B. Kayser, Proceedings of the 1984 Snowmass meeting (edited by R. Donaldson et. al.), p. 153;Google Scholar
  61. G. Altarelli, B. Mele, and M. Ruiz Altaba, CERN preprint (1989);Google Scholar
  62. F. Feruglio, L. Maiani, and A. Masiero, Padova preprint (1989);Google Scholar
  63. W. Keung and G. Senjanovic, Phys. Rev. Lett. 50, 1427 (1983).ADSCrossRefGoogle Scholar
  64. [34]
    Recent books on massive neutrinos are: R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics, World Scientific, Singapore, 1991;Google Scholar
  65. B. Kayser, F. Gibradebu, and F. Perrier, Massive Neutrino, World Scientific Singapore, 1989.Google Scholar
  66. [35]
    H. Robertson, Talk at PASCOS, 1991.Google Scholar
  67. [36]
    R. Abela et al., Phys. Lett. 146B, 431 (1984).Google Scholar
  68. [37]
    H. Albrecht et al., Phys. Lett. 202B, 149 (1988).Google Scholar
  69. [38]
    For a review see F. Boehm, Proceedings of “PASCOS-91” (edited by P. Nath) (to appear).Google Scholar
  70. [39]
    For a pedagogical review see R. N. Mohapatra, Forschritte Phys. 31, 185 (1983).CrossRefGoogle Scholar
  71. [40]
    D. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D18, 1819 (1978).Google Scholar
  72. [41]
    S. Sarkar and A. M. Cooper, Phys. Lett. 148B, 347 (1984);Google Scholar
  73. K. Sato and M. Kobayashi, Prog. Theor. Phys. 58, 1775 (1977);ADSCrossRefGoogle Scholar
  74. R. Cowsik, Phys. Rev. Lett. 39, 784 (1977);ADSCrossRefGoogle Scholar
  75. D. Lindley, Monthly Notices Roy. Astronom. Soc. 188, 15 (1979).ADSGoogle Scholar
  76. [42]
    R. N. Mohapatra and J. D. Vergados, Phys. Rev. Lett. 47, 1713 (1981);ADSCrossRefGoogle Scholar
  77. C. Piccioto and M. Zahir, Phys. Rev. D26, 2320 (1982).ADSGoogle Scholar
  78. [43]
    B. Kayser, Phys. Rev. D26, 1662 (1982).ADSGoogle Scholar
  79. [44]
    L. Wolfenstein, Phys. Lett. 107B, 77 (1981).Google Scholar
  80. [45]
    J. Valle, Phys. Rev. D27, 1672 (1983);ADSGoogle Scholar
  81. S. Petcov, Phys. Lett. 110B, 245 (1982);Google Scholar
  82. M. Doi, M. Kenmoku, T. Kotani, H. Nishiura, and E. Taskasugi, Osaka preprint OS-GE-83–48, 1983.Google Scholar
  83. [46]
    K. M. Case, Phys. Rev. 107, 307 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  84. [47]
    D. Chang and R. N. Mohapatra, Phys. Rev. D32, 1248 (1985).ADSGoogle Scholar
  85. [48]
    R. N. Mohapatra and S. Nussinov, Phys. Rev. D39, 1378 (1989).ADSGoogle Scholar
  86. [49]
    M. Roncadelli and G. Senjanovic, Phys. Lett. 107B, 59 (1983).Google Scholar
  87. [50]
    P. Pal, Nucl. Phys. B227, 237 (1983).ADSCrossRefGoogle Scholar
  88. [51]
    S. Pakvasa and B. McKellar, Phys. Lett. 122B, 33 (1983).Google Scholar
  89. [52]
    Y. Hosotani, Nucl. Phys. B191, 411 (1981);ADSCrossRefGoogle Scholar
  90. J. Schecter and J. W. F. Valle, Phys. Rev. D25, 774 (1982).ADSGoogle Scholar
  91. [53]
    For a recent discussion see S. Sarkar and A. M. Cooper, Phys. Lett. 148B, 347 (1984).Google Scholar
  92. [54]
    H. Primakoff and S. P. Rosen, Rep. Progr. Phys. 22, 121 (1959); Proc. Phys. Soc. (London) 78, 464 (1961);Google Scholar
  93. A. Halprin, P. Minkowski, H. Primakoff, and S. P. Rosen, Phys. Rev. D13, 2567 (1976);ADSGoogle Scholar
  94. M. Doi, T. Kotani, H. Nishiura, K. Okuda, and E Takasugi, Prog. Theor. Phys. 66, 1765 (1981); 68, 348 (1982) (E);Google Scholar
  95. W. Haxton, G. J. Stephenson, Jr., and D. Strottman, Phys. Rev. Lett. 47, 153 (1981); Phys. Rev. D25, 2360 (1982);ADSGoogle Scholar
  96. J. D. Vergados, Phys. Rev. C24, 640 (1981).CrossRefGoogle Scholar
  97. [55]
    F. Avignone et al., Talk at Fourth Workshop on Grand Unification, held in Philadelphia, 1983;Google Scholar
  98. E. Fiorini, Proceedings of XXI International Conference on High Energy Physics, Paris, 1982;Google Scholar
  99. D. Caldwell et al., Phys. Rev. Lett. 59, 419 (1987);ADSCrossRefGoogle Scholar
  100. H. Ejiri et al., J. Phys. G13, 839 (1987).ADSCrossRefGoogle Scholar
  101. [56]
    Riazuddin, R. E. Marshak, and R. N. Mohapatra, Phys. Rev. D24, 1310 (1981).ADSGoogle Scholar
  102. [57]
    R. N. Mohapatra, Nucl. Instr. Methods A284, 1 (1989), for a review.Google Scholar
  103. [58]
    W. Caswell, J. Milutinovic, and G. Senjanovic, Phys. Rev. D26, 161 (1982);ADSGoogle Scholar
  104. S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982).Google Scholar
  105. [59]
    J. Pasupathy, Phys. Lett B (to be published);Google Scholar
  106. S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982);Google Scholar
  107. U. Sarkar and S. P. Misra, Phys. Rev. D28, 249 (1983).Google Scholar
  108. [60]
    K. Chetyrkin et al., Phys. Lett. 99B, 358 (1981);MathSciNetGoogle Scholar
  109. P. G. Sandars, J. Phys. G6, L161 (1980);ADSCrossRefGoogle Scholar
  110. Riazzuddin, Phys. Rev. D25, 885 (1982);ADSGoogle Scholar
  111. C. Dover, M. Gal, and J. Richards, Phys. Rev. D27, 1090 (1983);ADSGoogle Scholar
  112. W. Alberico et al., Phys. Lett. 114B, 266 (1982);Google Scholar
  113. A. Kerman et al., MIT preprint, 183;Google Scholar
  114. For a review see: R. N. Mohapatra, Proceedings of the Harvard Workshop on N — N Oscillation, 1982.Google Scholar
  115. [61]
    R. Bionta et al., Phys. Lett. 114B, 266 (1982);Google Scholar
  116. V. L. Narasimhan et al., Chapter V; For other references, see Chapter V.Google Scholar
  117. [62]
    Barnes et al., Phys. Rev. Lett. 29, 1132 (1972);ADSCrossRefGoogle Scholar
  118. Poth et al., Nucl. Phys. A294, 435 (1977);Google Scholar
  119. Roberson et al., Phys. Rev. C16, 1945 (1977);ADSCrossRefGoogle Scholar
  120. For a review see C. J. Batty, Rutherford Laboratory preprint, 1981.Google Scholar
  121. [63]
    J. Cote et al., Phys. Rev. Lett. 48, 13198 (1982).CrossRefGoogle Scholar
  122. [64]
    R. Auerbach et al., Phys. Rev. Lett. 46, 702 (1980).ADSCrossRefGoogle Scholar
  123. [65]
    Riazzuddin, Phys. Rev. D25, 885 (1982).ADSGoogle Scholar
  124. [66]
    C. Dover, A. Gal, and J. Richards, Phys. Rev. D27, 1090 (1983);ADSGoogle Scholar
  125. A. Kerman et al., MIT preprint, 1983.Google Scholar
  126. [67]
    L. Jones et al., Phys. Rev. Lett. 52, 720 (1984).ADSCrossRefGoogle Scholar
  127. [68]
    P. K. Kabir, Phys. Rev. Lett. 51, 231 (1983).ADSCrossRefGoogle Scholar
  128. [69]
    S. L. Glashow, Cargese lectures, 1979.Google Scholar
  129. [70]
    R. N. Mohapatra and R. E. Marshak, Phys. Lett. 94B, 183 (1980).Google Scholar
  130. [71]
    M. Baldoceolin et al., CERN preprint (1983).Google Scholar
  131. [72]
    A. Higgs model realization of this idea has been discussed recently by J. C. Pati, A. Salam, and U. Sarkar, University of Maryland preprint, 1983.Google Scholar
  132. [73]
    The 0(B + L) = 0 result was first realized in a composite model by H. Harari, R. N. Mohapatra, and N. Seiberg, Nucl. Phys. B209, 174 (1982).CrossRefGoogle Scholar
  133. [74]
    G. Fidecaro et al., Phys. Lett. B156, 122 (1985).Google Scholar
  134. [75]
    M. Baldoceolin et al., Phys. Lett. B236, 95 (1990).Google Scholar
  135. [76]
    S. Ratti et al., Z. Phys. C43, 175 (1989).Google Scholar
  136. [77]
    D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, and M. K. Panda, Phys. Rev. D31, 1718 (1985).ADSCrossRefGoogle Scholar
  137. [78]
    A. Davidson and K. C. Wali, Phys. Rev. Lett. 59, 393 (1987);ADSCrossRefGoogle Scholar
  138. S. Rajpoot, Phys. Lett. B191, 122 (1987).Google Scholar
  139. The quark see-saw idea was first considered only for down quarks in D. Chang and R. N. Mohapatra, Phys. Rev. Lett. 58, 1600 (1987).CrossRefGoogle Scholar
  140. [79]
    R. N. Mohapatra, Phys. Lett. 210B, 517 (1988);Google Scholar
  141. K. S. Babu and X. He, Mod. Phys. Lett. A4, 61 (1989).ADSCrossRefGoogle Scholar
  142. [80]
    K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62, 1079 (1989); Phys. Rev. D41, 1286 (1990).CrossRefGoogle Scholar
  143. [81]
    B. S. Balakrishna, Phys. Rev. Lett. 60, 1602 (1988);ADSCrossRefGoogle Scholar
  144. B. S. Balakrishna, A. Kagan and R. N. Mohapatra, Phys. Lett. 205B, 345 (1988);Google Scholar
  145. B. S. Balakrishna and R. N. Mohapatra, Phys. Lett. 216B, 349 (1989).Google Scholar
  146. [82]
    J. Bahcall, Neutrino Astrophysics, Cambridge University Press, Cambridge, 1989.Google Scholar
  147. [83]
    R. Davis, Ref. [3].Google Scholar
  148. [84]
    K. Hirate et al., Ref. [3].Google Scholar
  149. [85]
    V. N. Gavrin, talk at “Neutrino ‘90” Conference (1990).Google Scholar
  150. [86]
    S. Mikheyev and A. Y. Smirnov, Nuovo Cimento 9C, 17 (1986);CrossRefGoogle Scholar
  151. L. Wolfenstein, Phys. Rev. D17, 2369 (1978).ADSGoogle Scholar
  152. [87]
    L. Okun, M. Voloshin, and M. Vysotskii, JETP 64, 446 (1986).Google Scholar
  153. [88]
    S. M. Barr, E. Freire, and A. Zee, Phys. Rev. Lett. 65, 262 (1990).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations