Advertisement

Phenomenology of Supersymmetric Models

  • Rabindra N. Mohapatra
Part of the Graduate Texts in Contemporary Physics book series (GTCP)

Abstract

In the previous three chapters we have laid the foundation for applying the ideas of supersymmetry to building models of particle physics. At present there exists a successful (at low energies) model of electro-weak and strong interactions—the standard SU(2) L × U(1) Y , × SU(3) c , model.

Keywords

Higgs Boson Minimal Supersymmetric Standard Model Decay Mode Supersymmetry Breaking Lepton Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    There exist several excellent recent reviews of the subject: H. Haber and G. Kane, Phys. Rep. 117, 76 (1984).Google Scholar
  2. [2]
    H. P. Nilles, Phys. Rep. 110, 1 (1984);ADSCrossRefGoogle Scholar
  3. R. Arnowitt, A. Chamseddine, and P. Nath, N = 1 Supergravity, World Scientific, Singapore, 1984.Google Scholar
  4. [3]
    P. Fayet, Nucl. Phys. B90, 104 (1975);ADSCrossRefGoogle Scholar
  5. R. K. Kaul and P. Majumdar, Nucl. Phys. B199, 36 (1982).ADSCrossRefGoogle Scholar
  6. [4]
    C. S. Aulakh and R. N. Mohapatra, Phys. Lett. 121B, 147 (1983);Google Scholar
  7. L. Hall and M. Suzuki, Nucl. Phys. B231, 419 (1984).ADSCrossRefGoogle Scholar
  8. G. G. Ross and J. W. F. Valle, Phys. Lett. 151B, 375 (1985).Google Scholar
  9. CELLO: H. Behread et al., Phys. Lett. 114B 287 (1982);Google Scholar
  10. JADE: W. Bartel et al., Phys. Lett. 114B 211 (1982);Google Scholar
  11. MARK J: D. Barber et al., Phys. Rev. Lett. 45 1904 (1981);Google Scholar
  12. TASSO: R. Brandelik et al., Phys. Lett. 117B 365 (1982).Google Scholar
  13. [6]
    M. K. Gaillard, L. Hall, and I. Hinchliffe, Phys. Lett. 116B, 279 (1982);Google Scholar
  14. M. Kuroda, K. Ishikawa, T. Kobayashi, and S. Yamada, Phys. Lett. 127B, 467 (1983).Google Scholar
  15. L. Gladney et al., Phys. Rev. Lett. 51 2253 (1983);Google Scholar
  16. E. Fernandez et al., Phys. Rev. Lett. 52 22 (1984).Google Scholar
  17. [8]
    R. M. Barnett, H. E. Haber, and K. Lackner, Phys. Lett. 126B, 64 (1983).Google Scholar
  18. [9]
    For an exhaustive study see E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Fermilab preprint, 1984.Google Scholar
  19. [10]
    H. Haber and G. Kane, Nucl. Phys. B232, 333 (1984).ADSCrossRefGoogle Scholar
  20. [11]
    B. Kayser, Private communication, 1983.Google Scholar
  21. [12]
    M. Chanowitz and S. Sharpe, Phys. Lett. 126B, 225 (1983);Google Scholar
  22. A. Mitra and S. Ono, CERN preprint, 1983.Google Scholar
  23. [13]
    W. Y. Keung and A. Khare, Phys. Rev. D (1984).Google Scholar
  24. a] G. Arnison et al., Phys. Lett. 139B 115 (1984).Google Scholar
  25. [13b]
    G. Kane and J. Leveille, Phys. Lett. 112B, 227 (1982);Google Scholar
  26. E. Reya and D. P. Roy, Phys. Rev. Lett. 53, 881 (1984);ADSCrossRefGoogle Scholar
  27. J. Ellis and H. Kowalski, CERN preprint, 1984.Google Scholar
  28. [14]
    S. Weinberg, Phys. Rev. Lett. 50, 387 (1983);MathSciNetADSCrossRefGoogle Scholar
  29. V. Barger, R. W. Robinett, W. Y. Keung, and R. J. N. Phillips, Phys. Lett. 131B, 372 (1983);Google Scholar
  30. A. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev. Lett. 49, 970 (1972);ADSCrossRefGoogle Scholar
  31. D. A. Dicus, S. Nandi, W. Repko, and X. Tata, Phys. Rev. Lett. 51, 1030 (1983); Phys. Rev. D29, 67 (1984);ADSGoogle Scholar
  32. J. Ellis, J. Hagelin, D. V. Nanopoulos, and M. Srednicki, Phys. Leu. 127B, 233 (1983).ADSGoogle Scholar
  33. J. Baily et al., Nucl. Phys. B150 (1979).Google Scholar
  34. [16]
    P. Fayet, in Unification of the Fundamental Particle Interactions, (edited by S. Ferrara et al.) Plenum, New York, 1980, p. 587;Google Scholar
  35. J. Ellis, J. Hagelin, and D. V. Nanopoulos, Phys. Lett. 116B, 283 (1982);Google Scholar
  36. R. Barbieri and L. Maiani, Phys. Lett. 117B, 203 (1982).Google Scholar
  37. [17]
    J. Ellis an D. V. Nanopoulos, Phys. Lett. 110B, 44 (1982);Google Scholar
  38. R. Barbieri and R. Gatto, Phys. Lett. 110B, 211 (1982);Google Scholar
  39. T. Inami and C. S. Lim, Nucl. Phys. B207, 533 (1982);ADSCrossRefGoogle Scholar
  40. B. A. Cambell, Phys. Rev. D28, 209 (1983);Google Scholar
  41. J. Donoghue, H. P. Nilles, and D. Wyler, Phys. Lett. 128B, 55 (1983);Google Scholar
  42. M. Suzuki, Phys. Lett. 115B, 40 (1982);Google Scholar
  43. E. Franco and M. Mangano, Phys. Lett. 135B, 40 (1982).Google Scholar
  44. [18]
    M. Suzuki, Phys. Lett. 115B, 40 (1982);Google Scholar
  45. M. Duncan, Nucl. Phys. B214, 21 (1983).ADSCrossRefGoogle Scholar
  46. [19]
    T. K. Kuo and N. Nakagawa, Nuovo Cim. Lett. 36, 560 (1983);CrossRefGoogle Scholar
  47. R. Barbieri and L. Maiani, Nucl. Phys. B224, 32 (1983);ADSCrossRefGoogle Scholar
  48. C. S. Lim, T. Inami, and N. Sakai, Phys. Rev. D29, 1488 (1984).ADSGoogle Scholar
  49. [20]
    J. Ellis and J. Hagelin, Nucl. Phys. B217, 189 (1983).ADSCrossRefGoogle Scholar
  50. [21]
    M. K. Gaillard, Y. C. Kao, I. H. Lee, and M. Suzuki, Phys. Lett. 123B, 241 (1983).Google Scholar
  51. A. Raichoudhury et al.,CERN preprint, 1984;Google Scholar
  52. P. Langacker and B. Sathiapalan, University of Pennsylvania preprint, 1984.Google Scholar
  53. [23]
    C. Nappi and B. Ovrut, Phys. Lett. 113B, 1751 (1982);Google Scholar
  54. M. Dine and W. Fishier, Phys. Lett. 110B, 227 (1982);Google Scholar
  55. L. Alvarez-Gaume, M. Claudson and M. Wise, Nucl. Phys. B207, 96 (1982);ADSCrossRefGoogle Scholar
  56. J. Ellis, L. Ibanez, and G. Ross, Phys. Lett. 113B, 283 (1982);Google Scholar
  57. R. Barbieri, S. Ferrara, and D. Nanopoulos, Z. Phys. C13, 267 (1982).Google Scholar
  58. [24]
    C. S. Aulakh and R. N. Mohapatra, Phys. Lett. 119B, 136 (1983);Google Scholar
  59. F. Zwirner, Phys. Lett. 132B, 103 (1983);Google Scholar
  60. L. Hall and M. Suzuki, Nucl. Phys. B231, 419 (1984);ADSCrossRefGoogle Scholar
  61. I. H. Lee, Nucl. Phys. B246, 120 (1984);ADSCrossRefGoogle Scholar
  62. G. G. Ross and J. W. F. Valle, Phys. Lett. B151, 375 (1985);Google Scholar
  63. J.Ellis et al., Phys. Lett. 150B 142 (1985);Google Scholar
  64. S. Dawson, Nucl. Phys. B261, 297 (1985);ADSCrossRefGoogle Scholar
  65. R. N. Mohapatra, Phys. Rev. D34, 3457 (1986);CrossRefGoogle Scholar
  66. V. Barger, G. Giudice, and T. Y. Han, Phys. Rev. D40 2987 (1989).ADSGoogle Scholar
  67. [25]
    R. N. Mohapatra, ref. [24] and L. Ibanez, F. Queredo, and M. Quiros, CERN preprint, 1989. For calculation of g - 2 muon in the theories, seeGoogle Scholar
  68. M. Frank and C. S. Kalman, Phys. Rev. D38, 1469 (1988).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations