Immunosuppression in Pancreas Transplantation

  • Dixon B. Kaufman
  • Rainer W. G. Gruessner


The term “induction therapy” is used to describe antilymphocyte antibody pharmacologics that are parenterally administered for a short course immediately posttransplant. The origin of the term “induction” is difficult to trace (it may relate to similar practices applied in the field of oncology); other words such as “priming” and “conditioning” have also been used.


Induction Therapy Mycophenolate Mofetil Pancreas Transplantation Kidney Recipient Pancreas Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brent L. Immunoregulation: The search for the holy grail. In: A History of Transplantation Immunology. New York: Academic Press; 1997: 230–305.CrossRefGoogle Scholar
  2. 2.
    Metchnikoff E. Recherches sur l’influence de l’organisme sur les toxins: toxine tetanique et leukocytes. Ann Inst Pasteur 1898; 12: 263–272.Google Scholar
  3. 3.
    Chew WB, Lawrence JS. Antilymphocyte serum. J Immunol 1937; 33: 271–278.Google Scholar
  4. 4.
    Cruickshank AH. Anti-lymphocyte serum. Br J Exp Pathol 1941; 22: 126–136.Google Scholar
  5. 5.
    Woodruff MFA, Anderson NA. Effect of lymphocyte depletion by thoracic duct fistula and administration of antilymphocyte serum on the survival of skin homografts in rats. Nature 1963; 200: 702.PubMedCrossRefGoogle Scholar
  6. 6.
    Gray JG, Monoco AP, Russell PS. Heterlogous mouse anti-lymphocyte serum to prolong skin homografts. Surg Forum 1964; 15: 142–144.PubMedGoogle Scholar
  7. 7.
    Monaco AP, Abbott WM, Othersen HB, et al. Antiserum to lymphocytes: prolonged survival of canine allografts. Science 1966; 153: 1264–1267.PubMedCrossRefGoogle Scholar
  8. 8.
    Wolstenholme GEW, O’Connor M, eds. Antilymphocytic Serum. CIBA Foundation Study Group No. 29. Boston: Little, Brown and Co; 1967.Google Scholar
  9. 9.
    Starzl TE, Marchioro TL, Porter KA, Iwasaki Y, Cerilli GJ. The use of heterologous antilymphoid agents in canine renal and liver homotransplantation and in human renal homotransplantation. Surg Gynecol Obstet 1967; 124: 301–308.PubMedGoogle Scholar
  10. 10.
    Najarian JS, Simmons RL, Gewurz H, Moberg A, Merkel F, Moore GA. Anti-serum to cultured human lymphoblasts: Preparation, purification and immunosuppressive properties in man. Ann Surg 1969; 170: 617–632.PubMedCrossRefGoogle Scholar
  11. 11.
    Kohler G, Milstein C. Continuous culture of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–497.PubMedCrossRefGoogle Scholar
  12. 12.
    Monaco AP. A new look at polyclonal antilymphocyte antibodies in clinical transplantation. Graft 1999; 2: 55.Google Scholar
  13. 13.
    OPTN data; May 17, 2002.Google Scholar
  14. 14.
    Kaufman DB, Leventhal JR, Koffron AJ, Abecassis MM, Fryer JP, Stuart FP. Simultaneous pancreas-kidney transplantation in the mycophenolate mofetil/tacrolimus era: Evolution from induction therapy with bladder drainage to non-induction therapy with enteric drainage. Surgery 2000; 128: 726–737.PubMedCrossRefGoogle Scholar
  15. 15.
    Kovarik JM, Kahan BD, Rajagopalan PR, Bennett W, Mulloy LL, Gerbeau C, Hall ML. Population pharmacokinetics and exposure-response relationships for basiliximab in kidney transplantation. The U.S. Simulect Renal Transplant Study Group. Transplantation 1999; 68: 1288–1294.PubMedCrossRefGoogle Scholar
  16. 16.
    Rubin RH, Cosimi AB, Hirsch MS, Herrin JT. Effects of antithymocyte globulin on cytomegalovirus infection in renal transplant recipients. Transplantation 1981; 31: 143–145.PubMedCrossRefGoogle Scholar
  17. 17.
    Cosimi AB, Wortis HH, Delmonico FL, Russell PS. Randomized clinical trial of antithymocyte globulin in cadaver renal allograft recipients: Importance of T cell monitoring. Surgery 1976; 80: 155–163.PubMedGoogle Scholar
  18. 18.
    Wechter WJ, Brodie JA, Morrell RM, Rafi M, Schultz JR. Antithymocyte globulin (ATGAM) in renal allograft recipients. Transplantation 1979; 28: 294–302.PubMedCrossRefGoogle Scholar
  19. 19.
    Kountz SL, Butt KHM, Rao TKS, Zielinski CM, Rafi M, Schultz JR. Antithymocyte globulin (ATG) dosage and graft survival in renal transplantation. Transplant Proc 1977; 9: 1023 1025.Google Scholar
  20. 20.
    Butt KMH, Zielinski CM, Parsa I, Elberg AJ, Wechter WJ, Kountz SL. Trends in immunosuppression for kidney transplantation. Kidney Int 1978; 13 (suppl 8): S95 - S98.Google Scholar
  21. 21.
    Krensky AM, Clayberger C. Transplantation immunology. Pediatr Clin North Am 1994; 41: 813–839.Google Scholar
  22. 22.
    Bunn D, Lea CK, Bevan DJ et al. The pharmacokinetics of antithymocyte globulin (ATG) following intravenous infusion in man. Clin Nephrol 1996; 1: 29–32.Google Scholar
  23. 23.
    Abouna GM, Al-Abdullah IH, Kelly-Sullivan D, et al. Randomized clinical trial of antithymocyte globulin induction in renal transplantation comparing fixed daily dose with dose adjustment according to T-cell monitoring. Transplantation 1995; 59: 1564–1568.PubMedGoogle Scholar
  24. 24.
    Forsythe J. ATG dosing: Daily or less frequently? Graft 1999; 2(suppl): S 10-S 14.Google Scholar
  25. 25.
    Ortho Multicenter Transplant Study Group. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N Engl J Med 1985; 313: 337–342.CrossRefGoogle Scholar
  26. 26.
    Gaston RS, Deterhoi MH, Patterson T, et al. OKT3 first-dose reaction: Association with T cell subsets and cytokine release. Kidney Int 1991; 39: 141–148.PubMedCrossRefGoogle Scholar
  27. 27.
    Chatenoud L, Ferran C, Reuter A, et al. Systemic reaction to the monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon. N Engl J Med 1989; 320: 1420–1421.PubMedCrossRefGoogle Scholar
  28. 28.
    Goldstein G, Fuccello AJ, Norman DJ, et al. OKT3 monoclonal antibody levels during therapy and the subsequent development of host antibodies to OKT3. Transplantation 1986; 42: 507–511.PubMedCrossRefGoogle Scholar
  29. 29.
    Norman DJ, Kahana L, Stuart FP. A randomized clinical trial of induction therapy with OKT3 in kidney transplantation. Transplantation 1993; 55: 44–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Opelz G. Efficacy of rejection prophylaxis with OKT3 in renal transplantation. Collaborative Transplant Study. Transplantation 1995; 60: 1220–1224.PubMedGoogle Scholar
  31. 31.
    Henry ML, Pelletier RP, Elkhammas EA, Bumgardner GL, Davies EA, Ferguson RM. A randomized prospective trial of OKT3 induction in the current immunosuppression era. Clin Transplant 2001; 15: 410–414.PubMedCrossRefGoogle Scholar
  32. 32.
    Smith KA. Interleukin-2: Inception, impact, and implications. Science 1988; 240: 1169–1176.PubMedCrossRefGoogle Scholar
  33. 33.
    Waldmann TA. The interleukin-2 receptor. J Biol Chem 1991; 266: 2681–2684.PubMedGoogle Scholar
  34. 34.
    Waldmann TA. Multichain interleukin-2 receptor: A target for immunotherapy in lymphoma. J Natl Cancer Inst 1989; 81: 914923.Google Scholar
  35. 35.
    Taniguchi T, Minami Y The IL-2/IL-2 receptor system: A current overview. Cell 1993; 73: 5–8.Google Scholar
  36. 36.
    Waldmann T, Tagaya Y, Bamford R. Interleukin-2, interleukin15, and their receptors. Int Rev Immunol 1998; 16: 205–226.PubMedCrossRefGoogle Scholar
  37. 37.
    Li XC, Schachter AD, Zand MS, Li Y, Zheng XX, Harmon WE, Strom TB. Differential expression of T-cell growth factors in rejecting murine islet and human renal allografts: Conspicuous absence of interleukin (IL)-9 despite expression of IL-2, IL-4, IL-7, and IL-15. Transplantation 1998; 66: 265–268.PubMedCrossRefGoogle Scholar
  38. 38.
    Plunkett FJ, Akbar AN. IL-15-friend or foe in transplantation rejection? Transplantation 2001; 72: 771.PubMedCrossRefGoogle Scholar
  39. 39.
    Osawa H, Diamantstein T. A rat monoclonal antibody that binds specifically to mouse T lymphoblasts and inhibits IL 2 receptor functions: A putative anti-IL 2 receptor antibody J Immunol 1984; 132: 2445–2450.Google Scholar
  40. 40.
    Reed MH, Shapiro ME, Strom TB, et al. Prolongation of primate renal allograft survival by anti-Tac, an anti-human IL-2 receptor monoclonal antibody. Transplantation 1989; 47: 55–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Brown PS Jr, Parenteau GL, Dirbas FM, et al. Anti-Tac-H, a humanized antibody to the interleukin 2 receptor, prolongs primate cardiac allograft survival. Proc Natl Acad Sci USA 1991; 88: 2663–2667.PubMedCrossRefGoogle Scholar
  42. 42.
    Kirkman RL, Shapiro ME, Carpenter CB, et al. A randomized prospective trial of anti-Tac monoclonal antibody in human renal transplantation. Transplantation 1991; 51: 107–113.PubMedCrossRefGoogle Scholar
  43. 43.
    Queen C, Schneider WP, Selick HE, et al. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 1989; 86: 10029–10033.PubMedCrossRefGoogle Scholar
  44. 44.
    Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N Engl J Med 1998; 338: 161–165.PubMedCrossRefGoogle Scholar
  45. 45.
    Kahan BD, Rajagopalan PR, Hall M. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-re-ceptor monoclonal antibody. United States Simulect Renal Study Group. Transplantation 1999; 67: 276–284.PubMedCrossRefGoogle Scholar
  46. 46.
    Nashan B, Amlot P, Moore R, et al. Randomized trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. Lancet 1997; 350: 1193–1198.PubMedCrossRefGoogle Scholar
  47. 47.
    Antithymocyte globulin, rabbit (Thymoglobulin) product information. Menlo Park, CA: SangStat Medical Corp; December 1998.Google Scholar
  48. 48.
    Bonnefoy-Berard N, Vincent C, Revillard JP. Antibodies against functional leukocyte surface molecules in polyclonal antilymphocyte and antithymocyte globulins. Transplantation 1991; 51: 669–673.PubMedCrossRefGoogle Scholar
  49. 49.
    Bonnefoy-Bérard N, et al. Apoptosis induced by polyclonal antilymphocyte globulins in human B cell lines. Blood 1994; 83: 1051–1069.PubMedGoogle Scholar
  50. 50.
    Rebellato LM, Gross U, Verbanac KM, Thomas JM. A comprehensive definition of the major antibody specificities in poly-clonal rabbit antithymocyte globulin. Transplantation 1984; 57: 685–694.CrossRefGoogle Scholar
  51. 51.
    Bourdage JS, Hamlin DM. Comparative polyclonal antithymocyte globulin and antilymphocyte/antilymphoblast globulin anti-CD antigen analysis by flow cytometry. Transplantation 1995; 59: 119–120.Google Scholar
  52. 52.
    Bonnefoy-Bérard N, et al. Antiproliferative effect of antilymphocyte globulins on B cells and B cell lines. Blood 1992; 79: 2164–2170.PubMedGoogle Scholar
  53. 53.
    Bonnefoy-Bérard N, Revillard JP. Mechanisms of immunosuppression induced by antithymocyte globulins and OKT3. J Heart Lung Transplant 1996; 15: 435–442.PubMedGoogle Scholar
  54. 54.
    Genestier L, Fournel S, Flacher M, Assossou O, Revillard JP, Bonnefoy-Berard N. Induction of Fas (Apo-1, CD95)-mediated apoptosis of activated lymphocytes by polyclonal antithymocyte globulins. Blood 1998; 91: 2360–2368.PubMedGoogle Scholar
  55. 55.
    Merion RM, Howell T, Bromberg JS. Partial T-cell activation and anergy induction by polyclonal antithymocyte globulin. Transplantation 1998; 65: 1481–1489.PubMedCrossRefGoogle Scholar
  56. 56.
    Muller TF, Grebe SO, Neumann MC, Heymanns J, Radsak K, Sprenger H, Lange H. Persistent long-term changes in lymphocyte subsets induced by polyclonal antibodies. Transplantation 1997; 64: 1432–1437.PubMedCrossRefGoogle Scholar
  57. 57.
    Guttman RD, et al. Pharmacokinetics, foreign protein immune response, cytokine release, and lymphocyte subsets in patients receiving Thymoglobulin and immunosuppression. Transplant Proc 1997; 19 (suppl 7A): 24S - 26S.CrossRefGoogle Scholar
  58. 58.
    Martin S, Brenchley PE, O’Donoghue DJ, et al. The identification of alto-and autolymphocytotoxic antibodies in serum, in the presence of rabbit antithymocyte globulin. Tissue Antigens 1988; 31: 26–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Gaber AO, et al. Results of the double-blind, randomized, multicenter, phase III clinical trial of Thymoglobulin versus ATGAM in the treatment of acute graft rejection episodes after renal transplantation. Transplantation 1998; 66: 29–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Thymoglobulin package insert. Fremont, CA: Sangstat Medical Co., 2002.Google Scholar
  61. 61.
    Zaltzman JS, Paul LC. Single center experience with Thymoglobulin in renal transplantation. Transplant Proc 1997; 29 (suppl A): 27S - 28S.PubMedCrossRefGoogle Scholar
  62. 62.
    Glotz D, Antoine C, Pegaz B, Fornairon S, Duboust A, Bariety J. 10-year results of induction therapy with Thymoglobulin: A single-center study of 329 patients. In: Proceedings of the American Society of Nephrology 31st Annual Meeting 1998 in Philadelphia, PA, abstract T841.Google Scholar
  63. 63.
    Brennan DC, Flavin K, Lowell J, Howard TK, Shenoy S, Burgess S, et al. A randomized, double-blinded comparison of Thymoglobulin versus ATGAM for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation 1999; 67: 1011–1018.PubMedCrossRefGoogle Scholar
  64. 64.
    Brennan DC, Flavin K, Mahon M, Burgess S, Howard T, Lowell J, Shenoy S, et al. An open-label study of 3 days of Thymoglobulin for induction in adult renal transplant recipients. In: Proceedings of the 18th Annual Meeting of the American Society of Transplantation (AST) 1999 in Chicago, IL, abstract 564: S147.Google Scholar
  65. 65.
    Hale G, Xia M-Q, Tighe HP, Dyer MJS, Waldmann H. The CAMPATH-1 antigen (CDw52). Tissue Antigens 1990; 35: 118–127.PubMedCrossRefGoogle Scholar
  66. 66.
    Xia M-Q, Hale G, Lifely MR, et al. Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem J 1993; 293: 633–640.PubMedGoogle Scholar
  67. 67.
    Bindon CI, Hale G, Waldmann H. Importance of antigen specificity for complement-mediated lysis by monoclonal antibodies. Eur J Immunol 1988; 18: 1507–1514.PubMedCrossRefGoogle Scholar
  68. 68.
    Hale C, Bartholomew M, Taylor V, Stables J, Topley P, Tite J. Recognition of CD52 allelic gene products by CAMPATH1H antibodies. Immunology 1996; 88: 183–190.PubMedCrossRefGoogle Scholar
  69. 69.
    Xia M-Q, Hale G, Waldmann H Efficient complement-mediated lysis of cells containing the CAMPATH-1 (CDw52) antigen. Mol Immunol 1993; 30: 1089–1096.PubMedCrossRefGoogle Scholar
  70. 70.
    Hale G, Waldmann H. From laboratory to clinic: The story of CAMPATH-1. Meth Mol Med 2000; 40: 243–266.Google Scholar
  71. 71.
    Friend PJ, Hale G, Waldmann H, et al. CAMPATH-1M-prophylactic use after kidney transplantation. Transplantation 1989; 48: 248–253.PubMedCrossRefGoogle Scholar
  72. 72.
    Dyer M. The role of CAMPATH-1 antibodies in the treatment of lymphoid malignancies. Sem Oncol 1999; 26 (suppl 14): 52–57.Google Scholar
  73. 73.
    Rowan WC, Gale G, Tite JP, Brett SJ. Cross-linking of the CAMPATH-1 antigen (CD52) triggers activation of normal human T lymphocytes. Int Immunol 1994; 7: 69–77.CrossRefGoogle Scholar
  74. 74.
    Wing MG, Moreau T, Greenwood J, et al. Mechanism of first-dose cytokine release syndrome by CAMPATH-IH: Involvement of CD16 (FCgamaRIII) and CD11/CD18 (LFA-1) on NK cells. J Clin Invest 1996; 98: 2819–2826.Google Scholar
  75. 75.
    Rowan W, Tite J, Topley P, Brett SJ. Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology 1998; 95: 427–436.PubMedCrossRefGoogle Scholar
  76. 76.
    Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood 1993; 82: 807–812.PubMedGoogle Scholar
  77. 77.
    Campath package insert. Cambridge, MA: Millennium and ILEX Partners LP, 2002.Google Scholar
  78. 78.
    Coles AJ, Wing M, Smith S, et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 1995; 354: 1691–1695.CrossRefGoogle Scholar
  79. 79.
    Calne R, Moffatt SD, Friend PJ, et al. Campath-1H allows low-dose cyclosporine monotherapy in 31 cadaveric renal allograft recipients. Transplantation 1999; 68: 1613–1616.PubMedCrossRefGoogle Scholar
  80. 80.
    Stratta RJ. Review of immunosuppressive usage in pancreas transplantation. Clin Transplant 1999; 13: 1–12.PubMedCrossRefGoogle Scholar
  81. 10.
    Immunosuppression on Pancreas Transplantation, 10.1. Induction Therapy 299Google Scholar
  82. 81.
    Sutherland DE, Moudry-Munns KC, Gruessner A. Pancreas transplant outcome with or without biological anti-T-cell therapy for induction immunosuppression with use of cyclosporine. Transplant Proc 1994; 26: 2752–2755.PubMedGoogle Scholar
  83. 82.
    Sollinger HW, Stratta RJ, D’Alessandro AM, Kalayoglu M, Pirsch JD, Belzer FO. Experience with simultaneous pancreas-kidney transplantation. Ann Surg 1988; 208: 475–83.PubMedCrossRefGoogle Scholar
  84. 83.
    Sutherland DER, Dunn DL, Goetz FC, Kennedy W, Ramsay RC, Steffes MW, Mauer SM, Gruessner R, Moudry-Munns KC, Morel P, Viste A, Robertson RP, Najarian JS. Ann Surg 1989; 209: 274–288.CrossRefGoogle Scholar
  85. 84.
    Brayman KL, Egidi MF, Naji A, Friedman AL, Holland MT, Tomaszewski JE, Samini F, Perloff J, Grossman R, Barker CF. Is induction therapy necessary for successful simultaneous pancreas and kidney transplantation in the cyclosporine era? Transplant Proc 1994; 26: 2525–2527.PubMedGoogle Scholar
  86. 85.
    Shapiro ME, Abrams JM, Brown RS, Steinman TI, Strom TB. Successful pancreas-renal transplantation without anti-T-cell antibody induction. Transplant Proc 1995; 27: 3087–3088.PubMedGoogle Scholar
  87. 86.
    Wadstrom J, Brekke B, Wramner L, Ekberg H, Tyden G. Triple versus quadruple induction immunosuppression in pancreas transplantation. Transplant Proc 1995; 27: 1317–1318.PubMedGoogle Scholar
  88. 87.
    Cantarovich D, Karam G, Giral-Classe M, Hourmant M, Dantal J, Blancho G, Le Normand L, Soulillou JP. Randomized comparison of triple therapy and antithymocyte globulin induction treatment after simultaneous pancreas-kidney transplantation. Kidney Int 1998; 54: 1351–1356.PubMedCrossRefGoogle Scholar
  89. 88.
    Lefrancois N, et al. Prophylactic polyclonal versus monoclonal antibodies in kidney and pancreas transplantation. Transplant Proc 1990; 22: 632–633.PubMedGoogle Scholar
  90. 89.
    Sollinger HW, Knechtle SJ, Reed A, D’Alessandro AM, Kalayoglu M, Belzer FO, Pirsch J. Experience with 100 consecutive simultaneous kidney-pancreas transplants with bladder drainage. Ann Surg 1991; 214: 703–711.PubMedCrossRefGoogle Scholar
  91. 90.
    Fasola CG, Hricik DE, Schulak JA. Combined pancreas-kidney transplants using quadruple immunosuppression therapy: A comparison between antilymphoblast and antithymocyte globulins. Transplant Proc 1995; 27: 3135–3136.PubMedGoogle Scholar
  92. 91.
    Stratta RJ, Taylor RJ, Weide LG, Sindhi R, Sudan D, Castaldo P, Cushing KA, Frisbie K, Radio SJ. A prospective randomized trial of OKT3 vs ATGAM induction therapy in pancreas transplant recipients. Transplant Proc 1996; 28: 917–918.PubMedGoogle Scholar
  93. 92.
    Cantarovich D, Le Mauff B, Hourmant M, Dantal J, Baatard R, Denis M, Jacques Y, Karam G, Paineau J, Soulillou JP. Prevention of acute rejection episodes with an anti-interleukin 2 receptor monoclonal antibody I. Results after combined pancreas and kidney transplantation. Transplantation 1994; 57: 198–203.PubMedCrossRefGoogle Scholar
  94. 93.
    Odorico JS, Pirsch JD, Knechtle SJ, D’Alessandro AM, Sollinger HW. A study comparing mycophenolate mofetil to azathioprine in simultaneous pancreas-kidney transplantation. Transplantation 1998; 66: 1751–1759.PubMedCrossRefGoogle Scholar
  95. 94.
    Elkhammas EA, Yilmaz S, Henry ML, Yenchar J, Bumgardner GL, Pelletier RP, Ferguson RM. Simultaneous pancreas/ kidney transplantation: Comparison of mycophenolate mofetil versus azathioprine. Transplant Proc 1998; 30: 512.PubMedCrossRefGoogle Scholar
  96. 95.
    Merton RM, Henry ML, Melzer JS, Sollinger HW, Sutherland DE, Taylor RJ. Randomized, prospective trial of mycophenolate mofetil versus azathioprine for prevention of acute renal allograft rejection after simultaneous kidney-pancreas transplantation. Transplantation 2000; 70: 105–111.Google Scholar
  97. 96.
    Bruce DS, Woodle ES, Newell KA, Millis JM, Cronin DC Jr, Loss GE, Grewal HP, Siegel CT, Pellar S, Josephson MA, Thistlethwaite JR. Tacrolimus/mycophenolate provides superior immunosuppression relative to Neoral/mycophenolate in synchronous pancreas-kidney transplantation. Transplant Proc 1998; 30: 1538–1540.PubMedCrossRefGoogle Scholar
  98. 97.
    Cony RI, Shapiro R, Egidi MF, Jordan ML, Scantlebury V, Vivas C, Gritsch HA, Starzl TE. Pancreas transplantation without antibody therapy. Transplant Proc 1998; 30: 299–300.CrossRefGoogle Scholar
  99. 98.
    Jordan ML, Shapiro R, Gritsch HA, Egidi F, Khanna A, Vivas CA, Scantlebury VP, Fung JJ, Starzl TE, Corry RJ. Long-term results of pancreas transplantation under tacrolimus immunosuppression. Transplantation 1999; 67: 266–272.PubMedCrossRefGoogle Scholar
  100. 99.
    Reddy KS, Stratta RJ, Shokouh-Amiri H, Alloway R, Somerville T, Egidi MF, Gaber LW, Gaber AO. Simultaneous kidney-pancreas transplantation without antilymphocyte induction. Transplantation 2000; 69: 49–54.PubMedCrossRefGoogle Scholar
  101. 100.
    Hajjar MA, Chang GJ, Mahanty HD, Roberts JP, Ascher NL, Hirose R, Stock PG, Freise CE. Superior rejection rates with Thymoglobulin induction in simultaneous pancreas-kidney transplantation. Am J Transplant 2001; 1 (suppl 1): 327.Google Scholar
  102. 101.
    Schulz T, Martin D, Heimes M, Klempnauer J, Buesing M. Tacrolimus/mycophenolate mofetil/steroid-based immunosuppression after pancreas-kidney transplantation with single-shot antithymocyte globulin. Transplant Proc 1998; 30: 1533–1535.PubMedCrossRefGoogle Scholar
  103. 102.
    Hesse UJ, Troisi R, Jacobs B, Van Vlem B, de Hemptinne B, Van Holder R, Vermassen F, De Roose J, Lameire N. A single center’s clinical experience with quadruple immunosuppression including ATG or IL2 antibodies and mycophenolate mofetil in simultaneous pancreas-kidney transplants. Clin Transplant 2000; 14: 340–344.PubMedCrossRefGoogle Scholar
  104. 103.
    Bruce DS, Sollinger HW, Humar A, Sutherland DER, Light JA, Kaufman DB, Alloway RR, Lo A, Stratta JR. Multicenter survey of daclizumab induction in simultaneous kidney-pancreas transplant recipients. Transplantation 2001; 72: 1637–1643.PubMedCrossRefGoogle Scholar
  105. 104.
    Stratta RJ, Shokouh-Amiri MH, Egidi MF, Grewal HP, Kizilisik AT, Nezakatgoo N, Gaber LW, Gaber AO. A prospective comparison of simultaneous kidney-pancreas transplantation with systemic-enteric versus portal-enteric drainage. Ann Surg 2001; 233: 740–751.PubMedCrossRefGoogle Scholar
  106. 105.
    Stratta RJ, Gaber AO, Shokouh-Amiri MH, Reddy KS, Alloway RR, Egidi MF, Grewal HP, Gaber LW, Hathaway D. Evolution in pancreas transplantation techniques: Simultaneous kidney-pancreas transplantation using portal-enteric drainage without antilymphocyte induction. Ann Surg 1999; 229: 701–708.PubMedCrossRefGoogle Scholar
  107. 106.
    Cantarovich D, Giral-Classe M, Hourmant M, Dantal J, Blancho G, Karam G, Soulillou JP. Low incidence of kidney rejection after simultaneous kidney-pancreas transplantation after antithymocyte globulin induction and in the absence of corticosteroids: Results of a prospective pilot study in 28 consecutive cases. Transplantation 2000; 69: 1505–1508.PubMedCrossRefGoogle Scholar
  108. 107.
    Kaufman DB, Leventhal JR, Koffron AJ, Gallon LG, Parker MA, Fryer JP, Abecassis MM, Stuart FP. A prospective study of rapid corticosteroid elimination in simultaneous pancreas-kidney transplantation: Comparison of two maintenance immunosuppression protocols: Tacrolimus/mycophenolate mofetil versus tacrolimus/ sirolimus. Transplantation 2002; 73: 169–177.PubMedCrossRefGoogle Scholar
  109. 108.
    Kaufman DB, Leventhal JR, Gallon LG, Parker MA, Elliott MD, Gheorghiade M, Koffron M, Fryer JP, Abecassis MM, Stuart FP. Technical and immunologic progress in simultaneous pancreas-kidney transplantation. Surgery. 2002; 132: 545.PubMedCrossRefGoogle Scholar
  110. 109.
    McDonald AS, Kiberd B, Salazar A, Colohan S, Bethune G, MacDonald SE, McAlister VC. Rapamycin and low-dose tacrolimus in kidney-pancreas recipients: A 12- to 36-month follow-up. Am J Transplant 2002; 2 (suppl 3): 141.Google Scholar
  111. 110.
    Knight RJ, Kerman R, Zela S, Van Buren CT, Katz SM, Kahan BD. Induction immunosuppression for pancreas transplantation utilizing Thymoglobulin, sirolimus, and reduced cyclosporine. Am J Transplant 2002; 2 (suppl 3): 203.CrossRefGoogle Scholar
  112. 111.
    Freise CE, Hirose R, Feng S, Kang S, Stock PG Minimal rejection with a steroid-sparing protocol in simultaneous pancreas kidney transplantation. Am J Transplant 2002; 2 (suppl 3): 203.CrossRefGoogle Scholar
  113. 112.
    Gruessner RWG. Antibody therapy in pancreas transplantation. Transplant Proc 1998; 30: 1556–1559.PubMedCrossRefGoogle Scholar
  114. 113.
    Bartlett ST, Schweitzer EJ, Johnson LB, Kuo PC, Papadimitriou JC, Drachenberg CB, Klassen DK, Hoehn-Saric EW, Weir MR, Imbembo AL. Equivalent success of simultaneous pancreas-kidney and solitary pancreas transplantation. A prospective trial of tacrolimus immunosuppression with percutaneous biopsy. Ann Surg 1996; 224: 440–449.PubMedCrossRefGoogle Scholar
  115. 114.
    Stratta RJ. Sequential pancreas after kidney transplantation: Is anti-lymphocyte induction therapy needed? Transplant Proc 1998; 30: 1549–1551.PubMedCrossRefGoogle Scholar
  116. 115.
    Stratta RJ, et al. Improving results in solitary pancreas transplantation with portal-enteric drainage and tacrolimus/mycophenolate mofetil-based immunosuppression with Thymoglobulin induction. Presented at the 10th Congress of the European Society for Organ Transplantation-ESOT 2001; October 6–11, 2001; Lisboa, Portugal. Poster 142.Google Scholar
  117. 116.
    Stegall MD, et al. Thymoglobulin induction decreases rejection in solitary pancreas transplantation. Transplantation 2001; 72: 1671–1675.PubMedCrossRefGoogle Scholar
  118. 117.
    Prieto M, Larsen TS, Kim Y, Nyberg SL, Sterioff S, Cohen A, Stegall MD. Ten-day induction with Thymoglobulin prevents rejection in solitary pancreas transplantation. Am J Transplant 2002; 2 (suppl 3): 142.Google Scholar
  119. 118.
    Kaufman DB, Burke G, Bruce D, Sutherland DER, Johnson C, Gaber AO, Merion R, Schweitzer E, Marsh C, Alfrey E, Leone J, Concepion W, Stegall M, Gores P, Danovitch G, Tolzman D, Scotellaro P, Salm K, Keller A, Fitzsimmons WE. The role of antibody induction in simultaneous pancreas kidney transplant patients receiving tacrolimus + mycophenolate mofetil immunosuppression. Transplantation 2000; 69: S206.CrossRefGoogle Scholar
  120. 119.
    Kaufman DB, Burke GW III, Bruce DS, Johnson CP, Gaber AO, Sutherland DER, Merion RM, Gruber SA, Schweitzer E, Leone JP, Marsh CL, Alfrey E, Concepcion W, Stegall MD, Schulak JA, Gores PF, Benedetti E, Smith C, Henning AK, Kuehnel F, King S, Fitzsimmons WE. A prospective, randomized, multi-center trial of antibody induction therapy in simultaneous pancreas-kidney transplantation. Am J Transplant. 2003; 3: 855–864.PubMedCrossRefGoogle Scholar
  121. 120.
    Burke GW, Kaufman DB, Bruce DS, Sutherland DER, Johnson CP, et al. The effect of antibody induction in simultaneous pancreas/kidney transplant patients receiving tacrolimus and mycophenolate mofetil: Two year results. Am J Transplant 2002; 2: 141.Google Scholar
  122. 121.
    Stratta RJ, Alloway RR, Hodge E, Lo A, for the PIVOT Study Group. A multicenter, open-label, comparative trial of two daclizumab dosing strategies versus no antibody induction in combination with tacrolimus, mycophenolate mofetil and steroids for the prevention of acute rejection in simultaneous kidney pancreas transplant recipients: Interim analysis. Clin Transplant 2002; 16: 60–68.PubMedCrossRefGoogle Scholar
  123. 122.
    Stratta RJ, Alloway RR, Lo A, Hodge E, for the PIVOT Study Group. Two dose daclizumab regimen provides superior outcomes in simultaneous kidney pancreas transplant recipients: primary endpoint analysis of a multicenter, randomized study. Am J Transplant 2002; 2 (suppl 3): 60–68.Google Scholar
  124. 123.
    Vincenti F, Lantz M, Birnbaum J, et al. A phase I trial of humanized anti-interleukin 2 receptor antibody in renal transplantation. Transplantation 1997; 63: 33.PubMedCrossRefGoogle Scholar
  125. 124.
    Stratta RJ for the FK/MMF Multicenter Study Group. Simultaneous use of tacrolimus and mycophenolate mofetil in combined pancreas-kidney transplant recipients: A multicenter report. Transplant Proc 1997; 29: 654.PubMedCrossRefGoogle Scholar
  126. 125.
    Burke GW, Ciancio G, Alejandro R, et al. Use of tacrolimus and mycophenolate mofetil for pancreas-kidney transplantation with or without OKT3 induction. Transplant Proc 1998; 30: 1544.PubMedCrossRefGoogle Scholar
  127. 126.
    Gruessner RWG, Sutherland DER, Drangstveit MB, West M, Gruessner AC. Mycophenolate mofetil and tacrolimus for induction and maintenance therapy after pancreas transplantation. Transplant Proc 1998; 30: 518.PubMedCrossRefGoogle Scholar
  128. 127.
    Sollinger HW, Odorico JS, Knechtle SJ, D’ Alessandro AM, Kalayoglu M, Pirsch JD. Experience with 500 simultaneous pancreas-kidney transplants. Ann Surg 1998; 228: 284.PubMedCrossRefGoogle Scholar
  129. 1.
    Murray JE, Merrill JP, Harrison JH, et al. Prolonged survival of the human-kidney homograft by immunosuppressive drug therapy. N Engl J Med 1963; 268: 1315–1318.PubMedCrossRefGoogle Scholar
  130. 2.
    Borel JF, Feurer C, Gubler HU, et al. Biological effects of cyclosporine A: A new antilymphocylic agent. Agents Actions 1976; 6: 468.PubMedCrossRefGoogle Scholar
  131. 3.
    Senel F, Kahan BD. New small molecule immunosuppressive agents. In: Ginns LC, Cosimi AB, Morris PJ, eds. Transplantation. Malden, MA: Blackwell Science; 1999: 167–184.Google Scholar
  132. 4.
    Stratta RJ. Review of immunosuppressive usage in pancreas transplantation. Clin Transplant 1999; 13: 1–12.PubMedCrossRefGoogle Scholar
  133. 5.
    Sutherland DER, Sibley RK, Xu XZ, et al. Twin-to-twin pancreas transplantation: Reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc Am Physicians 1984; 97: 80–87.PubMedGoogle Scholar
  134. 6.
    Zehrer CL, Gross CR. Quality of life of pancreas transplant recipients. Diabetologia 1991; 34: S145 - S149.PubMedCrossRefGoogle Scholar
  135. 7.
    Caine RY. The rejection of renal homografts. Inhibition in dogs by using 6-mercaptopurine. Lancet 1960; 1: 417.Google Scholar
  136. 8.
    Caine RY. Inhibition of the rejection of renal homografts in dogs with purine analogues. Transplant Bull 1961; 28: 445.CrossRefGoogle Scholar
  137. 9.
    Catalytica Pharmaceuticals Inc. Imuran prescribing information. 2000.Google Scholar
  138. 10.
    D’Apice AJF, Becker GJ, Kincaid-Smith P, et al. Prospective randomized trial of low-dose versus high-dose steroids in cadaveric renal transplantation. Transplantation 1984; 37: 373–377.PubMedCrossRefGoogle Scholar
  139. 11.
    Opelz G, Dohler B. Critical threshold of azathioprine dosage for maintenance immunosuppression in kidney graft recipients. Collaborative Transplant Study. Transplantation 2000; 68: 818–821.CrossRefGoogle Scholar
  140. 12.
    Kelly WD, Lillehei RC, Merkel FK, et al. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 1967; 61: 827–837.PubMedGoogle Scholar
  141. 13.
    Sutherland DER, Moudry-Munns KC. International Pancreas Transplant Registry Report. In: Terasaki PI, ed. Clinical Transplants 1988. Los Angeles: UCLA Tissue Typing Laboratory; 1988: 53–64.Google Scholar
  142. 14.
    Gruessner A. International Pancreas Transplant Registry. Personal communication; September 2002.Google Scholar
  143. 15.
    Gruessner RWG, Sutherland DER, Dunn DL, et al. 10 year follow-up after pancreas transplantation. Am J Transplant 2001; 1: 160.Google Scholar
  144. 16.
    Stratta RJ. Experience with azathioprine withdrawal after simultaneous kidney-pancreas transplantation. Transplant Proc 1998; 30: 1353–1354.PubMedCrossRefGoogle Scholar
  145. 17.
    Goodwin WE, Kaufman JJ, Matlock MM, et al. Human renal transplantation: Clinical experiences with 6 cases of renal homo-transplantation. J Urol 1963; 89: 13–23.PubMedGoogle Scholar
  146. 18.
    Starzl TE, Marchioro TL, Von Kaulla KN, et al. Homotransplantation of the liver in humans. Surg Gynecol Obstet 1963; 117: 659.PubMedGoogle Scholar
  147. 19.
    Crabtree GR. Corticosteroid-mediated immunoregulation in man Immunol Rev 1989; 65: 132.Google Scholar
  148. 20.
    Knudsen PJ, Dinarello CA, Strom TB. Glucocorticoids inhibit transcription and post-transcriptional expression of interleukin-1. J Immunol 1987; 39: 4129–4134.Google Scholar
  149. 21.
    Zanker B, Walz G, Wieder KJ, et al. Evidence that glucocorticoids block expression of the human interleukin-6 gene by accessory cells. Transplantation 1990; 49: 183–185.PubMedCrossRefGoogle Scholar
  150. 22.
    Fauci AS. Mechanisms of the immunosuppressive and antiinflammatory effects of gluco-corticosteroids. J Immunopharmacol 1979; 1: 1.CrossRefGoogle Scholar
  151. 23.
    Gerrard, TL, Cupps, TR, Jurgensen CH, et al. Hydrocortisone-mediated inhibition of monocyte antigen presentation: Dissociation of inhibitory effect and expression of DR antigen. Cell Immunol 1984; 85: 330.PubMedCrossRefGoogle Scholar
  152. 24.
    Auphan N, DiDonato JA, Rosette C, et al. Immunosuppression by glucocorticoids: Inhibition of NF-kappa activity through induction of I kappa B synthesis. Science 1995; 270: 232–233.CrossRefGoogle Scholar
  153. 25.
    Husberg BS. Treatment of acute and chronic rejection. In: Busuttil RW, Klintmalm GB, eds. Transplantation of the Liver. Philadelphia: W.B. Saunders Co; 1996: 755.Google Scholar
  154. 26.
    Langhoff E, Flachs H, Ladefoged J, et al. Intraindividual consistency of prednisolone kinetics during long-term prednisone treatment. Eur J Clin Pharmacol 1984; 26: 651–653.PubMedCrossRefGoogle Scholar
  155. 27.
    Lew KH, Ludwig EA, Milad MA, et al. Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics Clin Pharmacol Ther 1993; 54: 402–414.Google Scholar
  156. 28.
    Tornatore KM, Biocevich DM, Reed K, et al. Methylprednisolone pharmacokinetics, cortisol response, and adverse effects in black and white renal transplant recipients. Transplantation 1995; 59: 729–736.PubMedCrossRefGoogle Scholar
  157. 29.
    Milad MA, Ludwig EA, Lew KH, et al. The pharmacokinetics and pharmacodynamics of methylprednisolone in chronic renal failure. Am J Ther 1994; 1: 49–57.PubMedCrossRefGoogle Scholar
  158. 30.
    Venkataranmaman R, Habucky K, Burckart GJ, et al. Clinical pharmacokinetics in organ transplant patients. Clin Pharmcokin 1989; 16: 134–161.CrossRefGoogle Scholar
  159. 31.
    Jusko WJ, Ferron GM, Mis SM, et al. Pharmacokinetics of prednisolone during administration of sirolimus in patients with renal transplants. J Clin Pharmacol 1996; 36: 1100–1106.PubMedGoogle Scholar
  160. 32.
    Grant SD, Forsham PH, Ki Raimondo VC. Suppression of 17hydroxycorticosteroids in plasma and urine by single and divided doses of triamcinolone. N Engl J Med 1985; 273: 1115–1118.CrossRefGoogle Scholar
  161. 33.
    Harter JC, Reddy WJ, Thorn GW. Studies on an intermittent corticosteroid dosage regimen. N Engl J Med 1963; 269: 591–596.PubMedCrossRefGoogle Scholar
  162. 34.
    MacGregor RR, Sheagren JN, Lipsett MB, et al. Alternate-day prednisone therapy: Evaluation of delayed hypersensitivity responses, control of disease, and steroid side effects. N Engl J Med 1969; 280: 1427–1431.PubMedCrossRefGoogle Scholar
  163. 35.
    Julian BA Laskow DA, Dubovsky J, et al. Rapid loss of vertebral mineral density after renal transplantation. N Engl J Med 1991; 325: 544–550.PubMedCrossRefGoogle Scholar
  164. 36.
    Aroldi A, Tarantino A, Montagnino G, et al. Effects of three immunosuppressive regimens on vertebral bone density in renal transplant recipients. Transplantation 1997; 63: 380–386.PubMedCrossRefGoogle Scholar
  165. 37.
    Lillehei RC, Simmons RL, Najarian JS, et al. Pancreatico-duodenal allotransplantation: Experimental and clinical experience. Ann Surg 1970; 172: 405–436.PubMedCrossRefGoogle Scholar
  166. 38.
    Cantarovich D, Palneau J, Couderc JP, et al. Maintenance immunosuppression without corticosteroids following combined pancreas and kidney transplantation. Transplant Proc 1991; 23: 2224–2225.PubMedGoogle Scholar
  167. 39.
    Ward RG, Gecim E, Bone JM, et al. Cyclosporine monotherapy in pancreaticorenal transplantation. Transplant Proc 1994; 26: 548.PubMedGoogle Scholar
  168. 40.
    Hricik DE, Bartucci MR, Mayes JT, et al. The effects of steroid withdrawal on the lipoprotein profiles of cyclosporine-treated kidney and kidney-pancreas transplant recipients. Transplantation 1992; 54: 868–871.PubMedCrossRefGoogle Scholar
  169. 41.
    Gruessner RWG, Sutherland DER, Parr E, et al. Improvements from steroid withdrawal after pancreas transplantation: 1-year results of a prospective, randomized open-label study. Am J Transplant 2001; 1: 158.Google Scholar
  170. 42.
    Gruessner RWG, Sutherland DER, Parr E, et al. A prospective, randomized, open-label study of steroid withdrawal in pancreas transplantation-a preliminary report with 6-month follow-up. Transplant Proc 2001; 33: 1663–1664.PubMedCrossRefGoogle Scholar
  171. 43.
    Humar A, Parr E, Drangstveit MB, et al. Steroid withdrawal in pancreas transplant recipients. Clin Transplant 2000; 14: 75–78.PubMedCrossRefGoogle Scholar
  172. 44.
    Jordan ML, Chakrabarti P, Luke P, et al. Results of pancreas transplantation after steroid withdrawal under tacrolimus immunosuppression. Transplantation 2000; 69: 265–271.PubMedCrossRefGoogle Scholar
  173. 45.
    Jordan ML, Chakrabarti P, Luke PPW, et al. Steroid withdrawal for pancreas transplants under tacrolimus immunosuppression. Transplant Proc 2001; 33: 1665.CrossRefGoogle Scholar
  174. 46.
    Kahl A, Bechstein WO, Lorenz F, et al. Long-term prednisolone withdrawal after pancreas and kidney transplantation in patients treated with ATG, tacrolimus, and mycophenolate mofetil. Transplant Proc 2001; 233: 1694–1695.CrossRefGoogle Scholar
  175. 47.
    Kaufman DB, Leventhal JR, Gallon LG, et al. Rapid corticosteroid withdrawal in simultaneous pancreas-kidney transplantation. Am J Transplant 2001; 1: 158.Google Scholar
  176. 48.
    Dreyfuss M, Harri E, Hoftmann H, et al. Cyclosporine A and C: New metabolite from Trichoderma polysporum. Eur J Appl Microbiol 1976; 3: 125.CrossRefGoogle Scholar
  177. 49.
    Borel JF, Neuhaus P, Marquet C, et al. Effects of the new antilymphocytic peptide cyclosporine A in animals. Immunology 1977; 32: 1017.PubMedGoogle Scholar
  178. 50.
    Calne RY, Rolles K, White DJG, et al. Cyclosporine A initially as the only immunosuppressant in 36 recipients of cadaveric organs: 32 kidney, 2 pancreas and 2 livers. Lancet 1979; 2: 1033.PubMedCrossRefGoogle Scholar
  179. 51.
    Liu J, Farmer JD, Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporine A and FKBP-FK506 complexes. Cell 1991; 66: 807.PubMedCrossRefGoogle Scholar
  180. 52.
    Granelli-Piperano A, Nolan P, Inabak K, et al. The effect of immunosuppressive agents on the induction of nuclear factors that bind to sites on the interleukin 2 promoter. J Exp Med 1990; 172: 1869.CrossRefGoogle Scholar
  181. 53.
    Keown PA. Molecular and clinical therapeutics of cyclosporine in transplantation. In: Ginns LC, Cosimi AB, Morris PJ, eds. Transplantation. Malden, MA: Blackwell Science, 1999: 101–112.Google Scholar
  182. 54.
    Burckhardt JJ, Guggenheim B. Cyclosporin A: In vivo and in vitro suppression of rat T-lymphocytic function. Immunology 1979; 36: 753.PubMedGoogle Scholar
  183. 55.
    Hess AD, Tutschka PJ, Santos GW. Effect of cyclosporine on the induction of cytotoxic T lymphocytes: Role of interleukin1 and interleukin-2 Transplant Proc 1983; 15: 2248.Google Scholar
  184. 56.
    Hess AD, Donnenburg AD, Tutschka P, et al. Effect of cyclosporine A on human lymphocyte response in vitro: V. Analysis of responding T lymphocyte subpopulations in primary MLR with monoclonal antibodies. J Immunol 1983; 130: 717.PubMedGoogle Scholar
  185. 57.
    Hess AD, Bright EC. Cyclosporin inhibits T-cell activation at two distinct levels: Role of the CD 28 activation pathway. Transplant Proc 1991; 23: 961.PubMedGoogle Scholar
  186. 58.
    Khanna A, Li B, Sehajpal PK, et al. Mechanism of action of cyclosporine: A new hypothesis implicating transforming growth factor-ß. Transplant Rev 1995; 9: 41.CrossRefGoogle Scholar
  187. 59.
    Novartis Pharmaceuticals Corp. Neoral prescribing information. East Hanover, NJ; 2001.Google Scholar
  188. 60.
    Kovarik JM, Mueller EA, van Bree JB, et al. Reduced inter-and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharmaceut Sci 1994; 83: 44–116.CrossRefGoogle Scholar
  189. 60a.
    Nashan B, Cole E, Levy G, Thervet E. Clinical Validation Studies of Neoral C2 Monitoring: A Review. Transplantation 2002; 73: S3 - S11.CrossRefGoogle Scholar
  190. 61.
    Keown P, Niese D. Cyclosporine microemulsion increases drug exposure and reduces acute rejection without incremental toxicity in de novo renal transplantation. International Sandimmune Neoral Study Group. Kidney Int 1998; 54: 938–944.PubMedCrossRefGoogle Scholar
  191. 62.
    Lodge JPA, Pollard SG. Neoral vs Sandimmune: Interim results of a randomized trial of efficacy and safety in preventing acute rejection in new renal transplant recipients. Transplant Proc 1997; 29: 272–273.PubMedCrossRefGoogle Scholar
  192. 63.
    Frei UA, Neumayer HH, Buchholz B, et al. Randomized, double-blind, one-year study of the safety and tolerability of cyclosporine microemulsion compared with conventional cyclosporine in renal transplant patients. International Sandimmune Neoral Study Group. Transplantation 1998; 65: 1455–1460.PubMedCrossRefGoogle Scholar
  193. 64.
    Chan P, Chapman JR, Morris PJ. Glycosuria: An index of cyclosporine nephrotoxicity. Transplant Proc 1987; 19: 1780.PubMedGoogle Scholar
  194. 65.
    McCune TR, Thacker LR, Peters TG, et al. Effects of tacrolimus on hyperlipidemia after successful renal transplantation. Transplantation 1998; 65: 87–92.PubMedCrossRefGoogle Scholar
  195. 66.
    d’Ardenne AJ, Dunnill MS, Thompson JF, et al. Cyclosporin and renal graft histology. J Clin Pathol 1986; 39: 145.PubMedCrossRefGoogle Scholar
  196. 67.
    Neild GH, Taube DH, Hartley RB, et al. Morphological differentiation between rejection and cyclosporin nephrotoxicity in renal allografts. J Clin Pathol 1986; 39: 152–159.PubMedCrossRefGoogle Scholar
  197. 68.
    Perico N, Remuzzi G. Cyclosporine-induced renal dysfunction in experimental animals and humans. Transplant Rev 1991; 5: 63.CrossRefGoogle Scholar
  198. 69.
    Neumayer HH, Schreiber M, Wagner K. Prevention of delayed graft function by diltiazem and iloprost. Transplant Proc 1989; 21: 122.Google Scholar
  199. 70.
    Pirsch JD, D’Alessandro AM, Roecker EB, et al. A controlled, double-blind, randomized trial of verapamil and cyclosporine in cadaver renal transplant patients. Am J Kidney Dis 1993; 21: 189–195.PubMedGoogle Scholar
  200. 71.
    Remuzzi G, Perico N. Cyclosporine-induced renal dysfunction in experimental animals and humans. Kidney Int 1995; 52 (suppl): S70 - S74.Google Scholar
  201. 72.
    Klintmalm G, Bohman S-O, Sundelin B, et al. Interstitial fibrosis in renal allografts after 12 to 46 months of cyclosporin treatment: Beneficial effect of low doses in early post-transplantation period. Lancet 1984; 2: 950–954.PubMedCrossRefGoogle Scholar
  202. 73.
    Salomon DR. An alternative view minimizing the significance of cyclosporine nephrotoxicity and in favor of enhanced immunosuppression for long-term kidney transplant recipients. Transplant Proc 1991; 23: 2115–2118.PubMedGoogle Scholar
  203. 74.
    De Green PC, Aksamit AJ, Rakela J, et al. Central nervous system toxicity after liver transplantation: The role of cyclosporine and cholesterol. N Engl J Med 1987; 317: 861–866.CrossRefGoogle Scholar
  204. 75.
    Adams DH, Ponsford S, Gunson B, et al. Neurological complications following liver transplantation. Lancet 1987; 1: 949951.Google Scholar
  205. 76.
    Hinchey J, Chaves C, Appiguani B, et al. A reversible posterior leukoencephalopathy syndrome. N Engl J Med 1996; 334: 494–500.PubMedCrossRefGoogle Scholar
  206. 77.
    Stein DF, Lederman RJ, Vogt DP, et al. Neurological complications following liver transplantation. Ann Neurol 1992; 31: 644–649.PubMedCrossRefGoogle Scholar
  207. 78.
    Klintmalm GB, Iwatsuki S, Starzl TE. Cyclosporin A hepatotoxicity in 66 renal allograft recipients. Transplantation 1981; 32: 488–489.PubMedCrossRefGoogle Scholar
  208. 79.
    Curtis JJ, Luke RG, Jones P, et al. Hypertension in cyclosporine-treated renal transplant recipients dependent. Am J Med 1988; 85: 134–138.PubMedCrossRefGoogle Scholar
  209. 80.
    Vanrenterghem Y, Roels L, Lerut J, et al. Thromboembolic complications and haemostatic changes in cyclosporine-treated cadaveric kidney allograft recipients. Lancet 1985; 1: 999–1002.PubMedCrossRefGoogle Scholar
  210. 81.
    Rigotti P, Flechner SM, VanBuren CT, et al. Increased incidence of renal allograft thrombosis under cyclosporine immunosuppression. Int Surg 1986; 71: 38–41.PubMedGoogle Scholar
  211. 82.
    Nash MM, Zaltzman JS. Efficacy of azithromycin in the treatment of cyclosporine-induced gingival hyperplasia in renal transplant recipients. Transplantation 1998; 65: 1611–1615.PubMedCrossRefGoogle Scholar
  212. 83.
    Caine RY, White DJG, Rolles K, et al. Renal and segmental pancreatic grafting with draining of exocrine secretion and initial continuous intravenous cyclosporine A in a patient with insulin-dependent diabetes and renal failure. Br Med J 1982; 285: 677–680.CrossRefGoogle Scholar
  213. 84.
    Sollinger HW, Cook K, Kamps D, et al. Clinical and experimental experience with pancreaticocystostomy for exocrine pancreatic drainage in pancreas transplantation. Transplant Proc 1984; 16: 749–751.PubMedGoogle Scholar
  214. 85.
    Rynasiewicz JJ, Sutherland DER, Ferguson RM, et al. Cyclosporine A for immunosuppression: Observations in rat heart, pancreas, and islet allograft models and in human renal and pancreas transplantation. Diabetes 1982; 31: 92–107.PubMedGoogle Scholar
  215. 86.
    Gray DWR, Morris PJ. Cyclosporine and pancreas transplantation. World J Surg 1984; 8: 230–235.PubMedCrossRefGoogle Scholar
  216. 87.
    Caine RY, White DJG, Thiru S, et al. Cyclosporine A in patients receiving renal allografts from cadaver donors. Lancet 1978;II:1323–1327.Google Scholar
  217. 88.
    Sutherland DER. Pancreas transplantation: Overview and current status of cases reported to the registry through 1982. Transplant Proc 1983; 15: 2597.Google Scholar
  218. 89.
    Sutherland DER, Goetz FC, Najarian JS. One hundred pancreas transplants at a single institution. Ann Surg 1984; 200: 414–440.PubMedCrossRefGoogle Scholar
  219. 90.
    Sollinger HW, Stratta RJ, Kalayoglu M, et al. Pancreas transplantation with pancreaticocystostomy and quadruple immunosuppression. Surgery 1987; 102: 674–679.PubMedGoogle Scholar
  220. 91.
    Sutherland DER, Moudry-Munns KC, Gillingham K Pancreas transplantation: Report from the International Registry and preliminary analysis of United States results from the new United Network for Organ Sharing (UNOS) Registry. In: Terasaki PI, ed. Clinical Transplants 1989. Los Angeles: UCLA Tissue Typing Laboratory, 1989: 19–43.Google Scholar
  221. 92.
    Gunnarson R, Klintmalm G, Lundgren G, et al. Deterioration in glucose metabolism in pancreatic transplant recipients given cyclosporine. Lancet 1983;Sept 3: 571–572.CrossRefGoogle Scholar
  222. 93.
    Pozza G, Traeger J, Dubernard JM, et al. Cyclosporin and glucose tolerance in pancreas allotransplantation. Lancet 1983;Nov 3: 1080.CrossRefGoogle Scholar
  223. 94.
    Traeger J, Bosi E, Dubernard JM, et al. Thirty months’ experience with cyclosporin in human pancreatic transplantation. Diabetologia 1984; 27: 154–156.PubMedCrossRefGoogle Scholar
  224. 95.
    De Franscisco AM, Mauer SM, Steffes MW, et al. The effect of cyclosporine on native renal function in non-uremic diabetic recipients of pancreas transplants. J Diabetes Complicat 1987; 1: 128–131.CrossRefGoogle Scholar
  225. 96.
    Fioretto P, Steffes MW, Mihatsch MJ, et al. Cyclosporine associated lesions in native kidneys of diabetic pancreas transplant recipients. Kidney Int 1995; 48: 489–495.PubMedCrossRefGoogle Scholar
  226. 97.
    Brennan DC, Stratta RJ, Lowell JA, et al. Cyclosporine challenge in the decision of combined kidney-pancreas versus solitary pancreas transplantation. Transplantation 1994; 57: 1606–1611.PubMedGoogle Scholar
  227. 98.
    Collins BS, Davis CL, Marsh CL, et al. Reversible cyclosporine arteriolopathy. Transplantation 1992; 54: 732–734.PubMedCrossRefGoogle Scholar
  228. 99.
    Remuzzi G, Bertani T. Renal vascular and thrombotic effects of cyclosporine. Am J Kidney Dis 1989; 13: 261–272.PubMedGoogle Scholar
  229. 100.
    Young BA, Marsh CL, Alpers CE, et al. Cyclosporine-associated thrombotic microangiopathy/hemolytic uremic syndrome following kidney and kidney-pancreas transplantation. Am J Kidney Dis 1996; 28: 561–571.PubMedCrossRefGoogle Scholar
  230. 101.
    Blaauw AAM, Leunissen KML, Cheriex EC, et al. Disappearance of pulmonary capillary leak syndrome when intravenous cyclosporine is replaced by oral cyclosporine. Transplantation 1987; 43: 758–759.PubMedCrossRefGoogle Scholar
  231. 102.
    Esterl RM, Gupta N, Garvin PJ. Permanent blindness after cyclosporine neurotoxicity in a kidney-pancreas transplant recipient. Clin Neuropharmacol 1996; 19: 259–266.PubMedCrossRefGoogle Scholar
  232. 103.
    Ghalie R, Fitzsimmons WE, Bennett D. Cortical blindness. A rare complication of cyclosporine therapy. Bone Marrow Transplant 1990; 6: 147–149.PubMedGoogle Scholar
  233. 104.
    Tollemar J, Ringden O, Ericzon BG, et al. Cyclosporine A associated central nervous system toxicity. N Engl J Med 1988; 318: 788–789.CrossRefGoogle Scholar
  234. 105.
    Scheinman SJ, Reinitz ER, Petro G, et al. Cyclosporine central neurotoxicity following renal transplantation. Transplantation 1990; 49: 215–216.PubMedCrossRefGoogle Scholar
  235. 106.
    Canafax DM, Cipolle RJ, Hrushesky WJ, et al. The chronopharmacokinetics of cyclosporine and its metabolites in recipients of pancreas allografts. Transplant Proc 1988; 20: 47 1477.Google Scholar
  236. 107.
    Munda R, Schroeder TJ, Pedersen SA, et al. Cyclosporine pharmacokinetics in pancreas transplant recipients. Transplant Proc 1988; 20: 487–490.PubMedGoogle Scholar
  237. 108.
    Dawidson I, Ar’Rajab A, Lu C, et al. Cyclosporine blood levels predict the likelihood of rejection and toxicity after simultaneous pancreas-kidney transplantation. Transplant Proc 1995; 27: 1324–1326.PubMedGoogle Scholar
  238. 109.
    Storck M, Mickley V, Steinbach G, et al. Cyclosporine resorption in diabetic patients after simultaneous pancreas and kidney transplantation. Transplant Proc 1995; 27: 3094–3095.PubMedGoogle Scholar
  239. 110.
    Kaplan B, Wang Z, Abecassis M, et al. Cyclosporine pharmacokinetics and risk of recurrent rejection in recipients of simultaneous pancreas/kidney transplants. Ther Drug Monitor 1996; 18: 556–561.CrossRefGoogle Scholar
  240. 111.
    Van Der Piji JW, Srivastava N, Denouel J, et al. Pharmacokinetics of the conventional and microemulsion formulations of cyclosporine in pancreas-kidney transplant recipients with gastroparesis. Transplantation 1996; 62: 456–462.CrossRefGoogle Scholar
  241. 112.
    Chapman JR, O’Connell PJ, Bovington KJ, et al. Reversal of cyclosporine malabsorption in diabetic recipients of simultaneous pancreas and kidney transplants using a microemulsion formulation. Transplantation 1996; 61: 1699–1704.PubMedCrossRefGoogle Scholar
  242. 113.
    Rigotti P, Cadrobbi R, Baldan N, et al. Neoral versus Sandimmune in kidney-pancreas transplantation. Transplant Proc 1997; 29: 2924–2926.PubMedCrossRefGoogle Scholar
  243. 114.
    Cattral MS, Hemming AW, Greig PD, et al. Low incidence of rejection after synchronous pancreas-kidney transplantation with Neoral. Transplant Proc 1998; 30: 1946.PubMedCrossRefGoogle Scholar
  244. 115.
    Kino T, Hatanaka H, Miyata S, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces II Immunosuppressive effect of FK-506 in vitro. J Antibiot 1987; 40: 1256–1265.PubMedCrossRefGoogle Scholar
  245. 116.
    Starzl TE, Todo S, Fung J, et al. FK 506 for liver, kidney, and pancreas transplantation. Lancet 1989; 2: 1000–1004.PubMedCrossRefGoogle Scholar
  246. 117.
    Spencer CM, Goa KL, Gillis JC. Tacrolimus. An update of its pharmacology and clinical efficacy in the management of organ transplantation. Drugs 1997; 54: 925–975.PubMedCrossRefGoogle Scholar
  247. 118.
    Lang P, Baron C. Molecular mechanisms of immunosuppressive chemical agents recently introduced in clinical transplantation protocols. Nephrol Dial Transplant 1997; 12: 2050–2054.PubMedCrossRefGoogle Scholar
  248. 119.
    Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): Molecular and cellular mechanisms. Ther Drug Monitor 1995; 17: 584–591.CrossRefGoogle Scholar
  249. 120.
    Plosker GL, Foster RH. Tacrolimus: A further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 2000; 59: 323–389.PubMedCrossRefGoogle Scholar
  250. 121.
    Fujisawa Healthcare Inc. Prograf (tacrolimus) prescribing information. Deerfield, IL; October 1998.Google Scholar
  251. 122.
    van Duijnhoven E, Christiaans M, Undre N, et al. The effect of breakfast on the oral bioavailability of tacrolimus in diabetic and nondiabetic patients before transplantation. Transplant Proc 1998; 30: 1268–1270.PubMedCrossRefGoogle Scholar
  252. 123.
    Christiaans M, van Duijnhoven E, Beysens T, et al. Effect of breakfast on the oral bioavailability of tacrolimus and changes in pharmacokinetics at different times posttransplant in renal transplant recipients. Transplant Proc 1998; 30: 1271–1273.PubMedCrossRefGoogle Scholar
  253. 124.
    Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29: 404–430.PubMedCrossRefGoogle Scholar
  254. 125.
    Mignat C. Clinically significant drug interactions with new immunosuppressive agents. Drug Safety 1997; 16: 267–278.PubMedCrossRefGoogle Scholar
  255. 126.
    Undre NA, van Hooff J, Christiaans M, et al. Pharmacokinetics of FK 506 and mycophenolic acid after the administration of a FK 506-based regimen in combination with mycophenolate mofetil in kidney transplantation. Transplant Proc 1998; 30: 1299–1302.PubMedCrossRefGoogle Scholar
  256. 127.
    Zucker K, Rosen A, Nichols A, et al. A definitive effect of administration of tacrolimus on the pharmacokinetics of mycophenolate mofetil in renal transplant patients. Transplantation 1999; 67: S269.CrossRefGoogle Scholar
  257. 128.
    Burke GW, Alejandro R, Ciancio G, et al. The use of FK506 in simultaneous pancreas/kidney transplantation: Rescue, induction, and maintenance immunosuppression. Transplant Proc 1995; 27: 3123–3124.PubMedGoogle Scholar
  258. 129.
    Corry RJ, Egidi MF, Shapiro R, et al. Pancreas transplantation with enteric drainage under tacrolimus induction therapy. Transplant Proc 1997; 29: 642.PubMedCrossRefGoogle Scholar
  259. 130.
    Gruessner RWG, Bartlett ST, Burke GW, et al. Suggested guidelines for the use of tacrolimus in pancreas/kidney transplantation. Clin Transplant 1998; 12: 260–262.PubMedGoogle Scholar
  260. 131.
    Mor E, Yussin A, Chodoff L. New immunosuppressive agents for maintenance therapy in organ transplantation: Focus on adverse effects. Biodrugs 1997; 8: 459–488.Google Scholar
  261. 132.
    Jindal RM, Sidner RA, Milgrom ML. Post-transplant diabetes mellitus. The role of immunosuppression. Drug Safety 1997; 16: 242–257.PubMedCrossRefGoogle Scholar
  262. 133.
    Fernandez L, Lehmann R, Luzi L. The effect of maintenance doses of FK506 versus CSA on glucose and lipid metabolism after orthotopic liver transplantation. Transplantation 1998; 66: S50.CrossRefGoogle Scholar
  263. 134.
    Pirsch JD, Miller J, Deierhoi MH, et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 1997; 6: 977–983.CrossRefGoogle Scholar
  264. 135.
    Mayer AD, Dmitrewski J, Squifflet JP, et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: A report of the European Tacrolimus Multicenter Renal Study Group. Transplantation 1997; 4: 436–443.CrossRefGoogle Scholar
  265. 136.
    A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. The U.S. Multicenter FK506 Liver Study Group. N Engl J Med 1994; 31: 1110–1115.Google Scholar
  266. 137.
    Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. European FK506 Multicentre Liver Study Group. Lancet 1994; 44: 423428.Google Scholar
  267. 138.
    Philosophe B, Wiland AM, Klassen DK, et al. Management of tacrolimus-induced hyperglycemia following pancreas transplantation. Am J Transplant 2001; 1 (S1): 159.Google Scholar
  268. 139.
    Trimarchi HM, Truong LD, Brennan S, et al. FK506-associated thrombotic microangiopathy: report of two cases and review of the literature. Transplantation 1999; 7: 539–544.CrossRefGoogle Scholar
  269. 140.
    Jain A, McCauley J, Kashyap R. Incidence of end-stage renal failure amongst long-term survival of primary liver transplant recipients under tacrolimus: Adults and children. Transplantation 1998; 65: S24.CrossRefGoogle Scholar
  270. 141.
    Grupp C, Schmidt F, Braun F, et al. Haemolytic uremic syndrome (HUS) during treatment with cyclosporin A after renal transplantation-is tacrolimus the answer? Nephrol Dial Transplant 1998; 13: 1629–1631.PubMedCrossRefGoogle Scholar
  271. 142.
    Kaufman DB, Kaplan B, Kanwar YS, et al. The successful use of tacrolimus (FK506) in a pancreas/kidney transplant recipient with recurrent cyclosporine-associated hemolytic uremic syndrome. Transplantation 1995; 59: 1737–1739.PubMedCrossRefGoogle Scholar
  272. 143.
    Umashanker R, Koo C, Sato T, et al. New onset cardiomyopathy in adult liver transplant recipients on tacrolimus. Gastroenterology 1998; 114: 1357.CrossRefGoogle Scholar
  273. 144.
    Cox KL, Lawrence-Miyasaki LS, Garcia-Kennedy R, et al. An increased incidence of Epstein-Barr virus infection and lymphoproliferative disorder in young children on FK506 after liver transplantation. Transplantation 1995; 59: 524–529.PubMedGoogle Scholar
  274. 145.
    Grant D. Intestinal transplantation: 1997 report of the international registry. Intestinal Transplant Registry. Transplantation 1999; 67: 1061–1064.PubMedCrossRefGoogle Scholar
  275. 146.
    Jiang H, Kobayashi M. Differences between cyclosporin A and tacrolimus in organ transplantation. Transplant Proc 1999; 31: 1978–1980.PubMedCrossRefGoogle Scholar
  276. 147.
    Ricordi C, Tzakis AG, Carroll PB, et al. Human islet isolation and allotransplantation in 22 consecutive cases. Transplantation 1992; 53: 407–414.PubMedCrossRefGoogle Scholar
  277. 148.
    Shaffer D, Simpson MA, Conway P, et al. Normal pancreas allograft function following simultaneous pancreas-kidney transplantation after rescue therapy with tacrolimus (FK506). Transplantation 1995; 59: 1063–1066.PubMedCrossRefGoogle Scholar
  278. 149.
    Hariharan S, Munda R, Demmy AM, et al. Conversion from cyclosporine to tacrolimus after pancreas transplantation. Transplant Proc 1995; 27: 2981–2982.PubMedGoogle Scholar
  279. 150.
    Stratta RJ, Taylor RJ, Castaldo P, et al. Preliminary experience with FK 506 in pancreas transplant recipients. Transplant Proc 1995; 27: 3024.PubMedGoogle Scholar
  280. 151.
    Swanson C, Rubin M, Colquhoun S, et al. FK 506-based immunosuppression in clinical pancreas transplantation. Transplant Proc 1995; 27: 3031.PubMedGoogle Scholar
  281. 152.
    Teraoka S, Babazono T, Koike T, et al. Effect of rescue therapy using FK 506 on relapsing rejection after combined pancreas and kidney transplantation. Transplant Proc 1995; 27: 1335–1339.PubMedGoogle Scholar
  282. 153.
    Tesi RJ, Bryer-Ash M, Jaspan J, et al. Conversion of pancreas transplants to FK 506 from CsA. Transplant Proc 1995; 27: 3032–3033.PubMedGoogle Scholar
  283. 154.
    Henley SE, Larsen JL, Mack-Shipman L, et al. Lipids following pancreas transplantation in recipients receiving FK 506. Transplant Proc 1995; 27: 2997.Google Scholar
  284. 155.
    Burke GW, Alejandro R, Roth D, et al. Use of FK 506 in simultaneous pancreas/kidney transplantation: Lack of impairment of glycemic or lipid metabolism. Transplant Proc 1995; 27: 3119–3120.PubMedGoogle Scholar
  285. 156.
    Schmidt RJ, Venkat KK, Dumler F. Hemolytic-uremic syndrome in a renal transplant recipient on FK 506 immunosuppression. Transplant Proc 1991; 23: 3156–3157.PubMedGoogle Scholar
  286. 157.
    Gruessner RW, Burke GW, Stratta R, et al. A multicenter analysis of the first experience with FK506 for induction and rescue therapy after pancreas transplantation. Transplantation 1996; 61: 261–273.PubMedCrossRefGoogle Scholar
  287. 158.
    Gruessner RW. Tacrolimus in pancreas transplantation: A multicenter analysis. Tacrolimus Pancreas Transplant Study Group. Clin Transplant 1997; 11: 299–312.PubMedGoogle Scholar
  288. 159.
    Demetris AJ, Banner B, Fung J, et al. Histopathology of human renal allograft rejection under FK 506: A comparison with cyclosporine. Transplant Proc 1991; 23: 944–946.PubMedGoogle Scholar
  289. 160.
    Morphological characteristics of renal allografts showing renal dysfunction under FK 506 therapy: Is graft biopsy available to reveal the morphological findings corresponding with FK 506 nephropathy? Japanese FK 506 Study Group. Transplant Proc 1993; 25: 624–627.Google Scholar
  290. 161.
    Alloway RR, Russell WC, Gaber LW, et al. Conversion from cyclosporine to tacrolimus in kidney, kidney/pancreas, and pancreas alone transplant recipients: The Memphis experience. Transplant Proc 1996; 28: 995–997.PubMedGoogle Scholar
  291. 162.
    Becker G, Witzke O, Friedrich J, et al. Rescue therapy with tacrolimus in simultaneous pancreas/kidney transplantation. Transplant Int 1997; 10: 51–54.CrossRefGoogle Scholar
  292. 163.
    Cony RJ, Shapiro R, Egidi MF, et al. Pancreas transplantation without antibody therapy. Transplant Proc 1998; 30: 299–300.CrossRefGoogle Scholar
  293. 164.
    Demirbas A, Ciancio G, Burke G, et al. FK 506 in simultaneous pancreas/kidney transplantation: The University of Miami experience. Transplant Proc 1997; 29: 2903.Google Scholar
  294. 165.
    el Ghoroury M, Hariharan S, Peddi VR, et al. Efficacy and safety of tacrolimus versus cyclosporine in kidney and pancreas transplant recipients. Transplant Proc 1997; 29: 649–651.PubMedCrossRefGoogle Scholar
  295. 166.
    Ghasemian SR, Light JA, Currier C, et al. Tacrolimus vs Ne-oral in renal and renal/pancreas transplantation. Clin Transplant 1999; 13: 123–125.PubMedCrossRefGoogle Scholar
  296. 167.
    Hariharan S, Munda R, Cavallo T, et al. Rescue therapy with tacrolimus after combined kidney/pancreas and isolated pancreas transplantation in patients with severe cyclosporine nephrotoxicity. Transplantation 1996; 61: 1161–1165.PubMedCrossRefGoogle Scholar
  297. 168.
    Jordan ML, Shapiro R, Gritsch HA, et al. Long-term results of pancreas transplantation under tacrolimus immunosuppression. Transplantation 1999; 67: 266–272.PubMedCrossRefGoogle Scholar
  298. 169.
    Ketel BL, Turton-Weeks S, et al. Tacrolimus-based vs cyclosporine-based immunotherapy in combined kidney-pancreas transplantation. Transplant Proc 1996; 28: 899.PubMedGoogle Scholar
  299. 170.
    Peddi VR, Kamath S, Munda R, et al. Use of tacrolimus eliminates acute rejection as a major complication following simultaneous kidney and pancreas transplantation. Clin Transplant 1998; 12: 401–405.PubMedGoogle Scholar
  300. 171.
    Stratta RI, Taylor RI, Castaldo P, et al. FK 506 induction and rescue therapy in pancreas transplant recipients. Transplant Proc 1996; 28: 991–992.PubMedGoogle Scholar
  301. 172.
    Washburn WK, Shaffer D, Simpson MA, et al. Tacrolimus rescue therapy for renal allograft rejection refractory to cyclosporine-based immunosuppression. Transplant Proc 1996; 28: 1015–1016.PubMedGoogle Scholar
  302. 173.
    Corry RJ, Egidi MF, Shapiro R, et al. Tacrolimus without antilymphocyte induction therapy prevents pancreas loss from rejection in 123 consecutive patients. Transplant Proc 1998; 30: 521.PubMedCrossRefGoogle Scholar
  303. 174.
    Ciancio G, Burke G, Viciana A, et al. Use of intravenous tacrolimus to reverse vascular rejection in kidney and simultaneous kidney-pancreas transplantation. Transplant Proc 1998; 30: 1536–1537.PubMedCrossRefGoogle Scholar
  304. 175.
    Elmer DS, Abdulkarim AB, Fraga D, et al. Metabolic effects of FK 506 (tacrolimus) versus cyclosporine in portally drained pancreas allografts. Transplant Proc 1998; 30: 523–524.PubMedCrossRefGoogle Scholar
  305. 176.
    Bartlett ST, Schweitzer EJ, Johnson LB, et al. Equivalent success of simultaneous pancreas-kidney and solitary pancreas transplantation. A prospective trial of tacrolimus immunosuppression with percutaneous biopsy. Ann Surg 1996; 224: 440–449.PubMedCrossRefGoogle Scholar
  306. 177.
    Burke GW, Ciancio G, Alejandro R, et al. Cholesterol control: Long-term benefit of pancreas-kidney transplantation with FK 506 immunosuppression. Transplant Proc 1998; 30: 513–514.PubMedCrossRefGoogle Scholar
  307. 178.
    McCauley J, Shapiro R, Jordan ML, et al. Long-term lipid metabolism in combined kidney-pancreas transplant recipients under tacrolimus immunosuppression. Transplant Proc 2001; 33: 1698–1699.PubMedCrossRefGoogle Scholar
  308. 179.
    Randomised trial of cholesterol lowering in 4,444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–1389.Google Scholar
  309. 180.
    Laakso M, Lehto S, Penttila I, et al. Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes. Circulation 1993; 88: 1421–1430.PubMedCrossRefGoogle Scholar
  310. 181.
    Gruessner AC, Sutherland DER, Dunn DL, et al. Pancreas after kidney transplantation in posturemic patients with type I diabetes mellitus. J Am Soc Nephrol. In press.Google Scholar
  311. 182.
    Hariharan S, Peddi VR, Munda R, et al. Long-term renal and pancreas function with tacrolimus rescue therapy following kidney/pancreas transplantation. Transplant Proc 1997; 29: 652–653.PubMedCrossRefGoogle Scholar
  312. 183.
    Peddi VR, Munda R, Demmy AM, et al. Long-term kidney and pancreas function with tacrolimus immunosuppression following simultaneous kidney and pancreas transplantation. Transplant Proc 1998; 30: 1541–1543.PubMedCrossRefGoogle Scholar
  313. 184.
    Sutherland DE, Gruessner RW, Dunn DL, et al. Lessons learned from more than 1,000 pancreas transplants at a single institution. Ann Surg 2001; 233: 463–501.PubMedCrossRefGoogle Scholar
  314. 185.
    Gruessner RWG. Solitary pancreas transplantation for nonuremic patients with labile insulin-dependent diabetes mellitus. Transplantation 1997; 64: 1572–1577.PubMedCrossRefGoogle Scholar
  315. 186.
    Nakache R, Malaise J, Secchi A. Tacrolimus versus cyclosporine in primary simultaneous pancreas-kidney transplantation: Six months results of a large multicentre trial. Acta Chir Aust 2001; 33: 8.CrossRefGoogle Scholar
  316. 187.
    Williams RH, Lively DH, DeLong DC, et al. Mycophenolic acid: Antiviral and antitumor properties. J Antibiot 1968; 21: 463.PubMedCrossRefGoogle Scholar
  317. 188.
    Allison AC, Almquist SJ, Muller CD, et al. In vitro immunosuppressive effects of mycophenolic acid and an ester prodrug RS-61443. Transplant Proc 1991; 23 (suppl 2): 10.PubMedGoogle Scholar
  318. 189.
    Eugui EM, Almquist SJ, Muller CD, et al. Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: Role of deoxyguanosine nucleotide depletion. Scand J Immunol 1991; 33: 161.PubMedCrossRefGoogle Scholar
  319. 190.
    Allison AC, Eugui EM, Sollinger HW. Mycophenolate mofetil (RS-61443): Mechanisms of action and effects in transplantation. Transplant Rev 1993; 7: 129–139.CrossRefGoogle Scholar
  320. 191.
    Sollinger HW. From mice to maw The pre-clinical history of mycophenolate mofetil. Clin Transplant 1996; 10: 85.PubMedGoogle Scholar
  321. 192.
    Roche Laboratories Inc. Mycophenolate mofetil prescribing information. Nutley, NJ: 1998.Google Scholar
  322. 193.
    Allison AC, Kowalski WJ, Muller CJ, et al. Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules. Transplant Proc 1993; 25 (suppl 2): 67.PubMedGoogle Scholar
  323. 194.
    Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000; 47: 85–118.PubMedCrossRefGoogle Scholar
  324. 195.
    Nowak I, Shaw LM. Mycophenolic acid binding to human serum albumin: Characterization and relation to pharmacodynamics. Clin Chem 1995; 41: 1011–1017.PubMedGoogle Scholar
  325. 196.
    Bullingham RES, Nicholls A, Hale M. Pharmacokinetics of mycophenolate mofetil (RS-61443): A short review. Transplant Proc 1996; 28: 925–929.Google Scholar
  326. 197.
    Placebo-Controlled study of mycophenolate mofetil combined with cyclosporine and corticosteroids for prevention of acute rejection. European Mycophenolate Mofetil Study Group. Lancet 1995; 345: 1321–1324.Google Scholar
  327. 198.
    A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation 1996; 61: 1029–1037.CrossRefGoogle Scholar
  328. 199.
    Sollinger HW (for the US Renal Transplant Mycophenolate Mofetil Study Group). Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60: 225–232.PubMedCrossRefGoogle Scholar
  329. 200.
    Mathew TH. A blinded, long-term randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: Results at three years. Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation 1998; 65: 1450–1454.PubMedCrossRefGoogle Scholar
  330. 201.
    Merion RM, Henry ML, Melzer JS, et al. Randomized, prospective trial of mycophenolate mofetil versus azathioprine for prevention of acute renal allograft rejection after simultaneous kidney-pancreas transplantation. Transplantation 2000; 70: 105–111.PubMedGoogle Scholar
  331. 202.
    Odorico JS, Pirsch JD, Knechtle SJ, et al. A study comparing mycophenolate mofetil to azathioprine in simultaneous pancreas-kidney transplantation. Transplantation 1998; 66: 1751 1759.Google Scholar
  332. 203.
    Elkhammas EA, Yilmaz S, Henry ML, et al. Simultaneous pancreas/kidney transplantation: Comparison of mycophenolate mofetil versus azathioprine. Transplant Proc 1998; 30: 512.PubMedCrossRefGoogle Scholar
  333. 204.
    Stegall MD, Simon M, Wachs ME, et al. Mycophenolate mofetil decreases rejection in simultaneous pancreas-kidney transplantation when combined with tacrolimus or cyclosporine. Transplantation 1997; 64: 1695–1700.PubMedCrossRefGoogle Scholar
  334. 205.
    Stratta RJ, et al. (for the FK/MMF Multi-Center Study Group). Simultaneous use of tacrolimus and mycophenolate mofetil in combined pancreas-kidney transplant recipients: A multicenter report. Transplant Proc 1997;29:654–655.PubMedCrossRefGoogle Scholar
  335. 206.
    Gruessner RWG, Sutherland DER, Drangstveit MB, et al. Mycophenolate mofetil and tacrolimus for induction and maintenance therapy after pancreas transplantation. Transplant Proc 1998; 30: 518–520.PubMedCrossRefGoogle Scholar
  336. 207.
    Gruessner RWG, Sutherland DER, Drangstveit MB, et al. Mycophenolate mofetil in pancreas transplantation. Transplantation 1998; 66: 318–323.PubMedCrossRefGoogle Scholar
  337. 208.
    Bruce DS, Woodle ES, Newell KA, et al. Tacrolimus/mycophenolate provides superior immunosuppression relative to Neoral/mycophenolate in synchronous pancreas-kidney transplantation. Transplant Proc 1998; 30: 1538–1540.PubMedCrossRefGoogle Scholar
  338. 209.
    Burke GW, Ciancio G, Alejandro R, et al. Use of tacrolimus and mycophenolate mofetil for pancreas-kidney transplantation with or without OKT3 induction. Transplant Proc 1998; 30: 1544–1545.PubMedCrossRefGoogle Scholar
  339. 210.
    Busing M, Martin D, Schulz T, et al. Mycophenolate mofetil/ tacrolimus/single-shot versus azathioprine/cyclosporine/ATG in pancreas-kidney transplantation: Results of a prospective randomized single-center study. Transplant Proc 1998; 30: 516–517.PubMedCrossRefGoogle Scholar
  340. 211.
    Schulz T, Konzack J, Busing M. Mycophenolate mofetil/prednisone/single-shot ATG with tacrolimus or cyclosporine in pancreas/kidney transplantation: First results of an ongoing prospective randomized trial. Transplant Proc 1999; 31: 591–592.Google Scholar
  341. 212.
    Kahl A, Bechstein WO, Platz K, et al. First results with a quadruple therapy regimen including tacrolimus and mycophenolate mofetil in patients after combined pancreas and kidney transplantation. Transplant Proc 1998; 30: 505–506.PubMedCrossRefGoogle Scholar
  342. 213.
    Kaufman DB, Leventhal JR, Stuart J, et al. Mycophenolate mofetil and tacrolimus as primary maintenance immunosuppression in simultaneous pancreas-kidney transplantation. Transplantation 1999; 67: 586–593.PubMedCrossRefGoogle Scholar
  343. 214.
    Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 1975; 28: 721–726.PubMedCrossRefGoogle Scholar
  344. 215.
    Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989) a new antifungal antibiotic. H. Fermentation, isolation and characterization. J Antibiot 1975; 28: 727–732.PubMedCrossRefGoogle Scholar
  345. 216.
    Douros J, Suffness M. New antitumor substances of natural origin. Cancer Treat Rev 1981; 8: 63–87.PubMedCrossRefGoogle Scholar
  346. 217.
    Eng CP, Sehgal SN, Vezina C. Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot 1984; 37: 1231–1237.PubMedCrossRefGoogle Scholar
  347. 218.
    Heitman J, Movva NR, Hall MN. Target for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253: 905–909.PubMedCrossRefGoogle Scholar
  348. 219.
    Chiu MI, Katz H, Berlin V. RAPTI, a mammalian homologue of yeast TOR interacts with the FKBP12-rapamycin complex. Proc Natl Acad Sci USA 1994; 91: 12574–12578.PubMedCrossRefGoogle Scholar
  349. 220.
    Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: A review of the evidence. Kidney Int 2001; 59: 3–16.PubMedCrossRefGoogle Scholar
  350. 221.
    Terada N, Luca JJ, Szepesi A, et al. Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late Gl phase of the cell cycle. J Cell Physiol 1993; 154: 7–15.PubMedCrossRefGoogle Scholar
  351. 222.
    Kuo CJ, Chung J, Fiorentino DF, et al. Rapamycin selectively inhibits interleukin-2 activation of p70S6 kinase. Nature 1992; 358: 70–73.PubMedCrossRefGoogle Scholar
  352. 223.
    Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): Mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 1998; 31: 335–340.PubMedCrossRefGoogle Scholar
  353. 224.
    Aaguaard-Tillery KM, Jelinek D. Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell Immunol 1994; 152: 493–507.CrossRefGoogle Scholar
  354. 225.
    Kim HS, Raskova J, Degiannis D, et al. Effects of cyclosporine and rapamycin on immunoglobulin production by preactivated human B cell. Clin Exp Immunol 1994; 96: 508–512.PubMedCrossRefGoogle Scholar
  355. 226.
    Akselband Y, Harding MW, Nelson PA. Rapamycin inhibits spontaneous and fibroblast growth factor beta-stimulated proliferation of endothelial cells and fibroblasts. Transplant Proc 1991; 23: 2833.Google Scholar
  356. 227.
    Cao W, Mohacsi P, Shorthouse R, et al. Effect of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Transplantation 1996; 59: 390–395.Google Scholar
  357. 228.
    Marx S, Jayaraman R, Go LO, et al. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res 1995; 76: 412–417.PubMedCrossRefGoogle Scholar
  358. 229.
    Kahan BD. The role of rapamycin in chronic rejection prophylaxis: A theoretical consideration. Graft 1998; 1 (suppl II): 93.Google Scholar
  359. 230.
    Wyeth-Ayerst Pharmaceuticals Inc. Rapamycin prescribing in formation. Philadelphia; September 1999.Google Scholar
  360. 231.
    Napoli KL. A practical guide to the analysis of sirolimus using high-performance liquid chromatography with ultraviolet detection. Clin Ther 2000;22:B 14-B24.Google Scholar
  361. 232.
    Jones K, Saadat-Lajevardi S, Lee T, et al. An immunoassay for the measurement of sirolimus. Clin Ther 2000; 22: B49 - B61.PubMedCrossRefGoogle Scholar
  362. 233.
    Davis DL, Soldin SJ. An immunophilin-binding assay for sirolimus. Clin Ther 2000; 22: B62 - B70.PubMedCrossRefGoogle Scholar
  363. 234.
    Kahan BD (for the Rapamune US Study Group). Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: A randomized multicenter study. Lancet 2000; 356: 194–202.PubMedCrossRefGoogle Scholar
  364. 235.
    MacDonald AS (for the Rapamune Global Study Group). A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 2001; 71: 271–280.PubMedCrossRefGoogle Scholar
  365. 236.
    Groth CG, et al. Sirolimus (rapamycin)-based therapy in hu man renal transplantation. Transplantation 1999; 67: 1036–1042.PubMedCrossRefGoogle Scholar
  366. 237.
    Kreis H, et al. Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 2000; 69: 1252–1260.PubMedCrossRefGoogle Scholar
  367. 238.
    Hodak SP, Moubarak JB, Rodriquez I, et al. QT prolongation and near fatal cardiac arrhythmia after intravenous tacrolimus admin istration: A case report. Transplantation 1998; 66: 535–537.PubMedCrossRefGoogle Scholar
  368. 239.
    McAlister VC, Gao Z, Peltekian K, et al. Sirolimus-tacrolimus combination immunosuppression. Lancet 2000; 355: 376–377.PubMedCrossRefGoogle Scholar
  369. 240.
    Salazar A, McAlister VC, Kiberd BA, et al. Sirolimustacrolimus combination for combined kidney-pancreas transplantation: Effect on renal function. Transplant Proc 2001; 33: 1038–1039.PubMedCrossRefGoogle Scholar
  370. 241.
    Odorico JS, Pirsch JD, Becker YT, et al. Experience with rapamycin in pancreas transplantation. Am J Transplant 2001; 1: 160.Google Scholar
  371. 242.
    Jain AB, Scantlebury V, Garrido V, et al. Use of rapamycin in pancreatic transplantation under tacrolimus based immunosup pression. Am J Transplant 2001; 1: 212.Google Scholar
  372. 243.
    Philosophe B, Wiland AM, Klassen DL, et al. Management of tacrolimus-induced hyperglycemia following pancreas transplantation. Am J Transplant 2001; 1: 159.Google Scholar
  373. 244.
    Egidi MF, Cowan PA, Stratta RJ, et al. Conversion of sirolimus: Preliminary experience in pancreatic transplantation. Acta Chir Aust 2001; 33 (suppl): 8.CrossRefGoogle Scholar
  374. 245.
    Leichtman A, the Sirolimus HUS Compassionate Use Study Investigators. Sirolimus-based immunosuppression for immune prophylaxis of acute allograft reaction in patients with calcineurin-inhibitor induced hemolytic uremic syndrome. Am J Transplant 2001; 1: 141.Google Scholar
  375. 246.
    Kahl A, Muller AR, Lepenies J, et al. Sirolimus rescue therapy in patients with simultaneous pancreas and kidney transplantation with steroid or OKT3 resistant rejection. Acta Chir Aust 2001; 33 (suppl): 9.Google Scholar
  376. 247.
    Klassen DK, Wiland AM, Weir MR, et al. Conversion to sirolimus-based maintenance immunosuppressive therapy in pancreas allograft recipients. J Am Transplant 2001; 1: 213.Google Scholar
  377. 248.
    Kovarik JM, Rordorf C, McMahon L, et al. Exposure-response relationships for everolimus in de novo renal transplantation: Toward defining a therapeutic range. J Am Transplant 2001; 1: 474.Google Scholar
  378. 249.
    Curtis J, Nashan B, Kovarik JM, et al. RAD (everolimus) pharmacokinetics are unaltered with full-dose versus reduced-dose cyclosporine. Am J Transplant 2001; 1: 299.Google Scholar
  379. 250.
    Kaplan B, Kovarik JM, Tedesco Silva H, et al. RAD (everolimus) pharmacokinetics in de novo renal transplant patients: Dose-proportional, stable exposure over 6 months. J Am Transplant 2001; 1: 299.Google Scholar
  380. 250a.
    Kovarik JM, Kaplan B, Tedesco Silva H, Kahan BD, Dantal J, Vitko S, Boger R, Rordorf C. Exposure-response relationships for everolimus in de novo kidney transplantation: Defining a therapeutic range. Transplantation 2002; 73: 920–925.Google Scholar
  381. 251.
    Vitko S, Margreiter R, Weimar W, et al. Interanational, double-blind, parallel group study of the safety and efficacy of certican (RAN) versus mycophenolate mofetil (MMF) in combination with Neoral and steroids. Am J Transplant 2001; 1: 474.Google Scholar
  382. 252.
    RAD International Liver Study Group. A one-year, multicen ter, randomized, placebo-controlled, double-blind, parallel group, dose-finding study to evaluate the safety, tolerability and pharmacokinetics of RAD in de novo liver transplant recipients. Am J Transplant 2001; 1: 310.Google Scholar
  383. 253.
    Adachi K, Kohara T, Nakano N, et al. Design, synthesis, and structure-activity relationships of 2-substituted-2-amino-1, 3-propandediols: Discovery of a novel immunosuppressant, FTY720. Bioorg Med Chem 1995; 5: 853–856.Google Scholar
  384. 254.
    Brinkmann V, Schmouder R, Feng L, et al. FTY720: A novel class of immunosuppressant. Graft 1999; 2: 187–188.Google Scholar
  385. 255.
    Yanagawa Y, et al. FTY720, a novel immunosuppressant possessing unique mechanisms. II. TTY720 prolongs skin allograft survival by decreasing T-cell infiltration into grafts but not cytokine production in vivo. J Immunol 1998; 160: 5493–5499.PubMedGoogle Scholar
  386. 256.
    Chiba K, et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol 1998; 160: 5037–5044.PubMedGoogle Scholar
  387. 257.
    Chen S, Garcia GE, Liao R, et al. The identification of AG-protein-coupled receptor EDG-6 as a target of FTY720, a novel transplantation drug. Am J Transplant 2001; 1: 469.Google Scholar
  388. 258.
    Schmouder R, Choudhury S, Barilla D, et al. Prolonged, consistent oral absorption of FTY-720. Am J Transplant 2001; 1: 475.Google Scholar
  389. 259.
    Schmouder R, Dannecker R, Choudhury S, et al. FTY720 me tabolism in humans. Am J Transplant 2001; 1: 475.Google Scholar
  390. 260.
    Barilla D, Choudhury S, Ledford P, et al. Effect of impaired hepatic function on the systemic exposure of FTY720. Am J Transplant 2001; 1: 476.Google Scholar
  391. 261.
    Vaessen LMB, Mol WM, Ijzermans JNM, et al. Effects of the novel immunomodulatory FTY720 on circulating B cells, NK cells, and T cells expressing the chemokine receptors CCR2, CCR5, CXCR4, and CXCR3 in kidney transplant patients. Am J Transplant 2001; 1: 165.Google Scholar
  392. 262.
    Fujita T, Inoue D, Yamamoto S, et al. Fungal metabolites: Part II. A potent mmunosuppressive activity found is Isaria sinclairii metabolite. J Antibiot 1994; 47: 208–215.PubMedCrossRefGoogle Scholar
  393. 263.
    Lake P, Fumin F, DeLeo J, et al. Long-term islet graft survival in diabetic NOD mice is maintained by a novel immunomodulator FTY720. Am J Transplant 2001; 1: 370.Google Scholar
  394. 264.
    Kimikawa M, Sato Y, Ishii Y, et al. FTY720 and cyclophosphamide given pretransplant with donor peripheral blood stem cells induces tolerance to kidney allograft in rhesus monkeys. Am J Transplant 2001; 1: 441.Google Scholar
  395. 265.
    Tedesco H, Kahan B, Mourad G, et al. FTY720 combined with neoral and corticosteroids is effective and safe in prevention of acute rejection in renal allograft recipients (interim data). Am J Transplant 2001; 1: 243.CrossRefGoogle Scholar
  396. 266.
    Kahan B, Chodoff L, Leichtman A, et al. Safety and pharmacodynamics of multiple doses of FTY720 in stable renal transplant recipients. J Am Transplant 2001; 1: 300.Google Scholar
  397. 267.
    Boehler T, Waiser J, Schuetz M, et al. FTY720 mediates reversible reduction of lymphocyte counts in human renal allograft recipients-evidence for altered lymphocyte trafficking for the mechanism of action of FTY720. Am J Transplant 2001; 1: 474.Google Scholar
  398. 268.
    Smolen JS, Kalden JR, Scott DL, et al. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: A double-blind, randomized, multicenter trial. European Leflunomide Study Group. Lancet 1999; 253: 259–266.CrossRefGoogle Scholar
  399. 269.
    Bartlett RR, Dimitrijevic M, Mattar T, et al. Leflunomide (HWA 486), a novel immunomodulating compound for the treatment of autoimmune disorders and reactions leading to transplantation rejection. Agents Actions 1991; 32: 10–21.PubMedCrossRefGoogle Scholar
  400. 270.
    Chong ASF, Huang W, Liu W, et al. In vivo activity of leflunomide. Transplantation 1999; 68: 100–109.PubMedCrossRefGoogle Scholar
  401. 271.
    Chong ASF, Gebel H, Finnegan A, et al. Leflunomide, a novel immunomodulatory agent: In vitro analyses of the mechanism of immunosuppression. Transplant Proc 1993; 25: 747–749.PubMedGoogle Scholar
  402. 272.
    Schorlemmer HU, Kurrle R, Schleyerback R. Leflunomide’s active metabolite A77–1726 and its derivatives, the malononitrilamides, inhibit the generation of oxygen radicals in mononuclear phagocytes. Int J Immunother 1998; 14: 213.Google Scholar
  403. 273.
    Lin Y, Segers C, Waer M. Efficacy of the malononitrilamide X920715 as compared with leflunomide in cardiac allo-and xenotransplantation in rats. Transplant Proc 1996; 28: 3036.PubMedGoogle Scholar
  404. 274.
    McChesney L, Xiao F, Sankary H, et al. Evaluation of leflunomide in the canine renal transplantation model. Transplantation 1994; 57: 1717–1722.PubMedGoogle Scholar
  405. 274a.
    Williams JM, Mital D, Chong A, Kottayil A, Millis M, Longstreth J, Huang W, Brady L, Jensik S. Experiences with lefluromide in solid organ transplantation. Transplantation 2002; 73: 358–366.PubMedCrossRefGoogle Scholar
  406. 275.
    Lin Y, Vandeputte M, Waer M. A short-term combination therapy with cyclosporine and rapamycin or leflunomide induces long-term heart allograft survival in a strongly immunogenic strain combination in rats. Transplant Int 1996; 9 (suppl 1): s328.CrossRefGoogle Scholar
  407. 276.
    Lin Y, Vandeputte M, Waer M. Accommodation and T-independent B cell tolerance in rats with long-term surviving hamster heart xenografts. J Immunol 1998; 160: 369–375.PubMedGoogle Scholar
  408. 277.
    Bilolo KK, Qi S, Ouyang J, et al. Synergistic effect of tacrolimus with FK778 or FK779 in prevention of acute heart allograft rejection and in reversal of ongoing acute heart allograft rejection in the rat. Am J Transplant 2001; 1: 166.Google Scholar
  409. 278.
    Bîrsan T, Dambrin C, Klupp J, et al. Ex vivo evaluation of the immunosuppressive effect of the leflunomide derivative FK78 on whole blood lymphocytes of non-human primates. Am J Transplant 2001; 1: 439.Google Scholar
  410. 279.
    Dexter DL, Hesson DP, Ardecky RJ, et al. Activity of a novel 4quinolinecarboxylic acid, NSC368390,6-fluoro-2(2’-fluoro-1, 1’biphenyl-4-yl)-3-methyl-4-quinoline carboxylic acid, sodium salt, against experimental tumors. Cancer Res 1985; 45: 5563–5568.Google Scholar
  411. 280.
    Chen SF, Papp LM, Ardecky RJ, et al. Structure-activity relationship of quinoline carboxylic acids: A new class of inhibitors of DHODH. Biochem Pharmacol 1990; 40: 709–714.PubMedCrossRefGoogle Scholar
  412. 281.
    Tian L, Stepkowski SM, Qu XM, et al. Cytokine mRNA expression in tolerant heart allografts after immunosuppression with cyclosporine, sirolimus or brequinar. Transplant Immunol 1997; 5: 189–198.CrossRefGoogle Scholar
  413. 282.
    Cramer DV. Brequinar sodium. Transplant Proc 1996; 28: 960–963.PubMedGoogle Scholar
  414. 283.
    Takeuchi T, Linuma H, Kunimoto S, et al. A new antitumor antibiotic, spergualin: Isolation and antitumor activity. J Antibiot 1981; 34: 1619–1621.PubMedCrossRefGoogle Scholar
  415. 284.
    Nadler SG, Tepper M, Schacter B, et al. Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp 70 family of heat shock proteins. Science 1991; 258: 484.CrossRefGoogle Scholar
  416. 285.
    Dickneite G, Shorlemmer HU, Sedlacek HH. Decrease of mononuclear phagocyte cell functions and prolongation of graft survival in experimental transplantation by 15-deoxyspergualin. Int J Immunopharmacol 1987; 9: 559–565.PubMedCrossRefGoogle Scholar
  417. 286.
    Waaga AM, Ulrichs K, Krzymanski M, et al. The immunosuppressive agent 15-deoxyspergualin induces tolerance and modulates MHC-antigen expression and interleukin-1 production in the early phase of rat allograft responses. Transplant Proc 1990; 22: 1613–1614.PubMedGoogle Scholar
  418. 287.
    Takahara S, Jiang H, Takano Y, et al. The in vitro immunosuppressive effects of deoxyspergualin in man compared with FK506 and cyclosporine. Transplantation 1992; 53: 914–918.PubMedCrossRefGoogle Scholar
  419. 288.
    Sterbenz KG, Tepper MA. Effects of 15-deoxyspergualin on the expression of surface immunoglobulin in 70Z/3.12 murine pre-B cell line. Ann NY Acad Sci 1993; 685: 205–206.PubMedCrossRefGoogle Scholar
  420. 289.
    Thomas FT, Tepper MA, Thomas JM, et al. 15-Deoxyspergualin: A novel immunosuppressive drug with clinical potential. Ann NY Acad Sci 1993; 685: 175–192.PubMedCrossRefGoogle Scholar
  421. 290.
    Morris RE. 15-Deoxyspergualin: A mystery wrapped within an enigma. Clin Transplant 1991; 5: 530.Google Scholar
  422. 291.
    Koyama I, Amamiya H, Taguchi Y, et al. Prophylactic use of deoxyspergualin in a quadruple immunosuppressive protocol in renal transplantation. Transplant Proc 1991; 23: 1096–1098.PubMedGoogle Scholar
  423. 292.
    Amemiay H, Suzuki S, Ota K, et al. A novel rescue drug, 15deoxyspergualin. Transplantation 1990; 49: 337–343.CrossRefGoogle Scholar
  424. 293.
    Amemiya H. Deoxyspergualin: Clinical trials in renal graft rejection. Ann NY Acad Sci 1993; 685: 196–201.PubMedCrossRefGoogle Scholar
  425. 294.
    Takahashi K, Tanabe K, Ooba S, et al. Prophylactic use of a new immunosuppressive agent, deoxyspergualin, in patients with kidney transplantation from ABO incompatible or preformed antibody-positive donors. Transplant Proc 1991; 23: 1078–1082.PubMedGoogle Scholar
  426. 295.
    Groth CG. Deoxyspergualin in allogeneic kidney and xenogeneic islet transplantation: Early clinical trial. Ann NY Acad Sci 1993; 685: 193–195.PubMedCrossRefGoogle Scholar
  427. 296.
    Gores PF, Najarian JS, Stephanian E, et al. Insulin independence in type I diabetes after transplantation of unpurified islets from single donor with 15-deoxyspergualin. Lancet 1993; 341: 19.PubMedCrossRefGoogle Scholar
  428. 297.
    Zhou D, O’Brien CO, Garcia B, et al. LF15–0195, a novel immunosuppressive agent, prevents rejection and induces tolerance in a mouse cardiac allograft model. Am J Transplant 2001; 1: 437.Google Scholar
  429. 298.
    Mizuno K, Masatoshi T, Takada M, et al. Studies on bredinin I: Isolation, characterization and biological properties. J Antibiot 1974; 27: 775–782.PubMedCrossRefGoogle Scholar
  430. 299.
    Sakaguchi K, Tsujino M, Yoshizawa M, et al. Action of bredinin on mammalian cells. Cancer Res 1975; 35: 1643–1648.PubMedGoogle Scholar
  431. 300.
    Aso K, Uchida H, Sato K, et al. Immunosuppression with low dose cyclosporine combined with bredinin and prednisolone. Transplant Proc 1987; 19: 1955–1958.PubMedGoogle Scholar
  432. 301.
    Tanabe K, Tokumoto T, Ishikawa N, et al. Long-term results in mizoribine-treated renal transplant recipients: A prospective randomized trial of mizoribine and azathioprine under cyclosporine-based immunosuppression. Transplant Proc 1999; 31: 2877–2879.PubMedCrossRefGoogle Scholar
  433. 302.
    Lee HA, Slapak M, Venkatraman G, et al. Mizoribine as an alternative to azathioprine in triple-therapy immunosuppressant regimens in cadaveric renal transplantation. Transplant Proc 1993; 25: 2699–2700.PubMedGoogle Scholar
  434. 303.
    Abel MD, Aspeslet LJ, Freitag DG, et al. Preclinical efficacy of a novel calcineurin inhibitor. Am J Transplant 2001; 1: 436.Google Scholar
  435. 304.
    Abel MD, Aspeslet LJ, Freitag DG, et al. ISATX247: A novel calcineurin inhibitor with minimal renal toxicity. Am J Transplant 2001; 1: 437.Google Scholar
  436. 305.
    Bîrsan T, Dambrin C, Hook L, et al. In vivo evaluation of the novel immunosuppressant A-285222 in non-human primates. Am J Transplant 2001; 1: 438.Google Scholar
  437. 306.
    Yagci G, Fernandez L, Ishido N, et al. Piceatannol, a selective SYK/ZAP blocker, in combination with subtherapeutic doses of cyclosporine A prolongs allograft survival in rats. Am J Transplant 2001; 1: 166.Google Scholar
  438. 307.
    Sutherland DER, Gruessner RWG, Humar A, et al. Pretransplant immunosuppression for pancreas transplants alone in nonuremic diabetic recipients. Transplant Proc 2001; 33: 1656 1658.Google Scholar
  439. 308.
    Douzdjian V, Thacker LR, Blanton JW. Effect of race on out-come following kidney and kidney-pancreas transplantation in type I diabetics: The South-Eastern Organ Procurement Foundation Experience. Clin Transplant 1997; 11: 470–475.PubMedGoogle Scholar
  440. 309.
    Lo A, Stratta RJ, Egidi MF, Shokouh-Amiri MH, Grewal HP, Kizilisik AT, Alloway RR, Gaber AO. Outcome of simultaneous kidney-pancreas transplantation in African-American recipients: A case control study. Transplant Proc 2001; 33: 1675.PubMedCrossRefGoogle Scholar
  441. 310.
    Armenti VT, Mortiz MJ, Radomski JS, et al. Pregnancy and transplantation. Graft 2000; 3: 59–63.Google Scholar
  442. 311.
    Barrou BM, Gruessner AC, Sutherland DER, et al. Pregnancy after pancreas transplantation in the cyclosporine era. Transplantation 1998; 65: 524–527.PubMedCrossRefGoogle Scholar
  443. 312.
    Rechner SM, Katz AR, Rogen AJ, et al. The presence of cyclosporine in body tissues and fluids during pregnancy. Am J Kidney Dis 1985; 5: 60–63.Google Scholar
  444. 313.
    Burrows L, Knight R, Thomas A, et al. Cyclosporine levels during pregnancy. Transplant Proc 1994; 26: 2820–2821.PubMedGoogle Scholar
  445. 314.
    Armenti VT, Ahlswede KM, Ahlswede BA, et al. National Transplantation Pregnancy Registry: Outcomes of 154 pregnancies in cyclosporine-treated female kidney transplant recipients. Transplantation 1994; 57: 502–506.PubMedGoogle Scholar
  446. 315.
    Penn I, Makowski EL, Harris P. Parenthood following renal transplantation. Kidney Int 1980; 18: 221–233.PubMedCrossRefGoogle Scholar
  447. 316.
    Registration Committee of the European Dialysis and Transplant Association. Successful pregnancies in women treated by dialysis and kidney transplantation. Br J Obstet Gynaecol 1980; 87: 839–845.CrossRefGoogle Scholar
  448. 317.
    Wilson GA, Coscia LA, McGrory CH, Dunn SR, Radomski JS, Moritz MJ, Armenti VT. National Transplantation Pregnancy Registry: Postpregnancy graft loss among female pancreas-kidney recipients. Transplant Proc 2001; 33: 1667–1669.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Dixon B. Kaufman
  • Rainer W. G. Gruessner

There are no affiliations available

Personalised recommendations