Quantum Integrability

  • L. E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)


As we have seen in Sect. (2.3.1), a classical conservative system with N degrees of freedom is integrable if there exist N independent global functions whose mutual Poisson brackets vanish. Integrability in quantum systems is defined in an analogous manner.


Quantum System Random Matrix Theory Toda Lattice Quantum Integrability Fourth Order Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, P.W., Child, M.S., and Phillips, C.S.G., Tables for Group Theory(Oxford University Press, 1970).Google Scholar
  2. Eckhardt, B. (1988): Phys. Rept. 163205.MathSciNetADSCrossRefGoogle Scholar
  3. Ganoulis, N. (1987): Commun.in Math.Phys. 10923.MathSciNetADSMATHCrossRefGoogle Scholar
  4. Gutzwiller, M.C. (1980): Annals of Physics 124347.MathSciNetADSCrossRefGoogle Scholar
  5. Gutzwiller, M.C. (1981): Annals of Physics 133304.MathSciNetADSCrossRefGoogle Scholar
  6. Hietarinta, J. (1982): Phys. Lett. A9355 (1982).MathSciNetCrossRefGoogle Scholar
  7. Hietarinta, J. (1984): J. Math. Phys. 251833.MathSciNetADSCrossRefGoogle Scholar
  8. Holt, C.R. (1982): J. Math. Phys. 231037.MathSciNetADSMATHCrossRefGoogle Scholar
  9. Magyari, E., Thomas, H., Weber, R., Kaufman, C., and Muller, G. (1987): Z. Phys. B. — Condensed Matter 65363.MathSciNetADSCrossRefGoogle Scholar
  10. Mansfield, P. (1982): Nuclear Phys. B208277.MathSciNetADSCrossRefGoogle Scholar
  11. Moser, J. (1979): Amer. Sci. (USA) 67689.ADSGoogle Scholar
  12. Olive, D.I. and Turok, N. (1983a): Nue. Phys. B215470.MathSciNetADSCrossRefGoogle Scholar
  13. Olive, D.I. and Turok, N. (1983b): Nue. Phys. B220491.MathSciNetADSCrossRefGoogle Scholar
  14. Olshanetsky, M.A. and Perelomov, A.M. (1983): Phys. Repts. 94313.MathSciNetADSCrossRefGoogle Scholar
  15. Srivastava, N., Kaufman, C., Müller, G., Weber, R., and Thomas, H., (1988): Z. Phys. B.- Condensed Matter 70251.ADSCrossRefGoogle Scholar
  16. Srivastava, N., Kaufman, C., Müller, G. (1990a): J. Applied Phys.675627.ADSCrossRefGoogle Scholar
  17. Srivastava, N. and Müller, G. (1990b): Z. Phys. B80137.CrossRefGoogle Scholar
  18. Müller, G. (1986): Phys. Rev. A343345.MathSciNetCrossRefGoogle Scholar
  19. Peres, A. (1984): Phys. Rev. Lett. 531711.ADSCrossRefGoogle Scholar
  20. Zaslavsky, G.M. (1981): Phys. Repts. 80157.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • L. E. Reichl
    • 1
  1. 1.Center for Statistical Mechanics and Complex Systems, Department of PhysicsUniversity of Texas at AustinAustinUSA

Personalised recommendations