Global Properties

  • L. E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)


The area preserving maps of Chapter 3 have given us a clear picture of the complex behavior in conservative systems as they undergo a transition to chaos. These maps, however, are somewhat special. For example, the whisker map describes the stochastic layer in the separatrix region of the Duffing oscillator, the standard map describes a small neighborhood of the stochastic layer, and the quadratic maps describe the neighborhood of isolated islands in these maps.


Global Property Primary Resonance Nonlinear Resonance Duffing Oscillator Resonance Zone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnol’d V.I. (1964): Sov. Math. Doklady 5581 (Reprinted in [MacKay and Meiss 1987]).MATHGoogle Scholar
  2. Byrd, P.F. and Friedman, D. (1971): Handbook of Elliptic Integrals for Engineers and Scientist(Springer-Verlag, Berlin, 1971).CrossRefGoogle Scholar
  3. Casati, G., Guarneri, I., and Shepelyansky, D.L. (1988): (I.E.E.E.) J. Quant. Elec. 241420.ADSCrossRefGoogle Scholar
  4. Chernikov, A.A., Natenzon, M.Ya., Petrovichev, B.A., Sagdeev, R.Z., and Zaslavsky, G.M. (1988): Phys. Lett. A129377.MathSciNetCrossRefGoogle Scholar
  5. Chernikov, A.A., Sagdeev, R.Z., Usikov, D.A., and Zaslavsky, G.M. (1989): Computers Math. Applic. 1717.MathSciNetMATHCrossRefGoogle Scholar
  6. Chirikov, B. (1979): Phys. Rept. 52263.MathSciNetADSCrossRefGoogle Scholar
  7. Chirikov, B., Ford, J., and Vivaldi, F. (1979): Nonlinear Dynamics and the Beam-Beam Interactionedited by M. Month and J.C. Herrera, A.I.P. Conference Proceedings, 57(American Institute of Physics)Google Scholar
  8. Cocke, S. and Reichl, L.E. (1990): Phys. Rev. A413733.ADSCrossRefGoogle Scholar
  9. Dermott, S.F. and Murray, C.D. (1983): Nature 301201.ADSCrossRefGoogle Scholar
  10. Escande, D.F. (1982): Phys. Scripta T2/1126.CrossRefGoogle Scholar
  11. Escande, D.F. (1985): Phys. Rep. 121165.MathSciNetADSCrossRefGoogle Scholar
  12. Escande, D.F. and Doveil, F. (1981): J. Stat. Phys. 26257.MathSciNetADSCrossRefGoogle Scholar
  13. Gerasimov, A., Izrailev, F.M., Tennyson, J.L., Temnyykh, A.B., (1986): Springer Lecture Notes in Physics 247154 (Reprinted in [MacKay and Meiss 1987]).ADSCrossRefGoogle Scholar
  14. Hatori, T. and Irie, H. (1987): Prog. Theor. Phys. (Japan) 78249.MathSciNetADSCrossRefGoogle Scholar
  15. Jensen, R.V. (1984): Phys. Rev. A30386.MathSciNetADSCrossRefGoogle Scholar
  16. Jensen, R.V. (1987): Physica Scripta 35668.ADSCrossRefGoogle Scholar
  17. Kaneko, K. and Bagley, R.J. (1985): Phys. Lett. 110A435.MathSciNetCrossRefGoogle Scholar
  18. Kirkwood, D. (1867): Meteoric Astronomy(Lippincott, Philidelphia).Google Scholar
  19. Landau, L.D. and Lifshitz, E.M. (1976): Mechanics(Pergamon Press, Oxford).Google Scholar
  20. Laskar, J. (1989): Nature 338237.ADSCrossRefGoogle Scholar
  21. Lichtenberg, A.J. and Lieberman, M.A. (1983): Regular and Stochastic Motion(Springer-Verlag, New York).MATHCrossRefGoogle Scholar
  22. Lin, W.A. and Reichl, L.E. (1985): Phys. Rev. A311136.ADSCrossRefGoogle Scholar
  23. Lin, W.A. and Reichl, L.E. (1986): Physica 19D145.MathSciNetMATHGoogle Scholar
  24. MacKay, R.S. and Meiss, J.D. (1987): Hamiltonian Dynamical Systems(Adam Kilger, Bristal).MATHGoogle Scholar
  25. Moser, J. (1978): Math. Intelligencer 165.MathSciNetADSCrossRefGoogle Scholar
  26. Murray, C.D. (1986): Icarus 6570.ADSCrossRefGoogle Scholar
  27. Petrosky, T., Prigogine, I., and Tasaki, S., (1991): Physica A173175.MathSciNetCrossRefGoogle Scholar
  28. Petrosky, T. and Prigogine, I. (1991): “Alternative Formulation of Classical and Quantum Dynamics for Nonintegrable Systems” (Preprint: University of Texas at Austin, 1991).Google Scholar
  29. Petrosky, T. and Hasegawa, H. (1989): Physica A160351.MathSciNetCrossRefGoogle Scholar
  30. Petrosky, T. and Prigogine, I. (1990): Can. J. Phys. 68670.MathSciNetADSMATHCrossRefGoogle Scholar
  31. Reichl, L.E. and Zheng, W.M. (1984a): Phys. Rev. A292186.ADSCrossRefGoogle Scholar
  32. Reichl, L.E. and Zheng, W.M. (1984b): Phys. Rev. A301068.ADSCrossRefGoogle Scholar
  33. Sussman, G.J. and Wisdom, J. (1988): Science 241433.ADSCrossRefGoogle Scholar
  34. Tennyson, J.L. (1983): “Resonance Streaming in Electron-Positron Colliding Beam Systems” in Long Time Prediction in Dynamics, edited by Horton, W., Reichl, L.E., and Szebehely, V. (J.Wiley and Sons, New York) p.427.Google Scholar
  35. Watson, G.N. (1944): A Treatise on the Theory of Bessel Functions(Cambridge University Press, Cambridge).MATHGoogle Scholar
  36. Wisdom, J. (1985): Icarus 63272.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • L. E. Reichl
    • 1
  1. 1.Center for Statistical Mechanics and Complex Systems, Department of PhysicsUniversity of Texas at AustinAustinUSA

Personalised recommendations