Advertisement

Fundamental Concepts

  • L. E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)

Abstract

There are three basic concepts which are essential for understanding the dynamical behavior of nonlinear conservative systems. The first is the concept of global symmetrieswhich serve to constrain the dynamical flow of the system to lower dimensional surfaces in the phase space. Some of these global symmetries are obvious and are related to the space-time symmetries of the system. Others are not obvious and have been called “hidden symmetries” by Moser [Moser 1979]. When there are as many global symmetries as degrees of freedom, the dynamical system is said to be integrable. The second important concept is that of nonlinear resonance. As Kolmogorov [Kolmogorov 1954], Arnol’d [Arnol’d 1963], and Moser [Moser 1962] have shown, when a small symmetry-breaking term is added to the Hamiltonian, most of the phase space continues to behave as if the symmetries still exist. However, in regions where the symmetry-breaking term allows resonance to occur between otherwise uncoupled degrees of freedom, the dynamics begins to change its character. When resonances do occur, they generally occur on all scales in the phase space and give rise to an incredibly complex structure as we shall see. The third important concept is that of chaosor sensitive dependence on initial conditions.

Keywords

Phase Space Canonical Transformation Toda Lattice Nonlinear Resonance Bernoulli Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel, H. (1976): in Studies in Math Physics, edited by E. Lieb, B. Simon, and A.S. Wrightman, Princeton Series in Physics (Princeton University Press, Princeton, New Jersey)Google Scholar
  2. Arnol’d, V.I. (1963): Russ. Math. Survey 189 (1963); 1885 (1963).ADSMATHCrossRefGoogle Scholar
  3. Arnol’d, V.I. and Avez, A. (1968): Ergodic Problems of Classical Mechanics(W.A. Benjamin, New York).MATHGoogle Scholar
  4. Barrar, R. (1970): Celestial Mech. 2494.MathSciNetADSMATHCrossRefGoogle Scholar
  5. Benettin, G., Galgani, L., and Strelcyn, J.M. (1976): Phys. Rev. A142338.ADSGoogle Scholar
  6. Benettin, G. and Strelcyn, J.M. (1978): Phys. Rev. A17773.ADSCrossRefGoogle Scholar
  7. Benettin, G., Froeshle, C., and Scheidecker, J.P. (1979): Phys. Rev. A192454.MathSciNetADSCrossRefGoogle Scholar
  8. Berry, M.V. (1978): AIP Conference Proceedings 4616. Reprinted in [MacKay and Meiss 1987].ADSCrossRefGoogle Scholar
  9. Bunimovich, L.A. (1974): Punct. Anal. Appl. 8254.MATHCrossRefGoogle Scholar
  10. Byrd, P.F. and Friedman, M.D. (1971): Handbook of Elliptic Integrals for Engineers and Scientists(Springer-Verlag, Berlin)MATHCrossRefGoogle Scholar
  11. Casartelli, M., Diana, E., Galgani, L., and Scotti, A. (1976): Phys. Rev. A131921.ADSCrossRefGoogle Scholar
  12. Chirikov, B. (1979): Phys. Rept. 52263.MathSciNetADSCrossRefGoogle Scholar
  13. Date, E. and Tanaka, S. (1976): Prog. Theor. Phys. 55457; Prog. Theor. Phys. Suppl. 59107.MathSciNetADSMATHCrossRefGoogle Scholar
  14. Davis, H.T. (1962): Introduction to Nonlinear Differential and Integral Equations(Dover Pub., Inc., New York)MATHGoogle Scholar
  15. Duffing, G. (1918): Erzwungene Schwingungen bei veränderlicher Eigenfrequenz(Braunschweig, Vieweg).MATHGoogle Scholar
  16. Farquhar, I.E. (1964): Ergodic Theory in Statistical Mechanics(Wiley-Interscience, New York).Google Scholar
  17. Farquhar, I.E. (1972): in Irreversibility in the Many-Body Problem, edited by J. Beil and J. Rae (Plenum Press, New York).Google Scholar
  18. Flaschka, H. (1974): Phys. Rev.B91924.MathSciNetADSGoogle Scholar
  19. Ford, J., Stoddard, D.S., and Turner, J.S. (1973): Prog. Theor. Phys. 501547.ADSCrossRefGoogle Scholar
  20. Goldstein, H. (1980): Classical Mechanics(Addison-Wesley Pub. Co., Reading, Mass.)MATHGoogle Scholar
  21. Henon, M. and Heiles, C. (1964): Astron. J. 6973.MathSciNetADSCrossRefGoogle Scholar
  22. Henon, M. (1974): Phys. Rev. B91921.MathSciNetADSGoogle Scholar
  23. Kac, M. and van Moerbeke, P. (1975): Proc. Natl. Acad. Sci. (USA) 722879.ADSMATHCrossRefGoogle Scholar
  24. Kolmogorov, A.N. (1954): Dokl. Akad. Nauk. SSSR 98527 (1954) (An english version appears in R. Abraham, Foundations of Mechanics(W.A. Benjamin, New York, 1967) Appendix D.)MathSciNetMATHGoogle Scholar
  25. Kolmogorov, A.N. (1958): Dokl. Akad. Nauk SSSR 119861.MathSciNetMATHGoogle Scholar
  26. Kolmogorov, A.N. (1959): Dokl. Akad. Nauk SSSR 124754 (1959).MathSciNetMATHGoogle Scholar
  27. Lax, P.D. (1968): Comm. Pure Appl. Math. 21467.MathSciNetMATHCrossRefGoogle Scholar
  28. Lebowitz, J.L. and Penrose, O. (1973): Physics Today, February Issue.Google Scholar
  29. Lichtenberg, A.J. and Lieberman, M.A. (1983): Regular and Stochastic Motion(Springer-Verlag, New York)MATHCrossRefGoogle Scholar
  30. Lin, W.A. and Reichl, L.E. (1985): Phys.Rev. A311136.ADSCrossRefGoogle Scholar
  31. MacKay, R.S. and Meiss, J.D. (1987): Hamiltonian Dynamical Systems(Adam Hilger, Bristol).MATHGoogle Scholar
  32. Meyer, H.D. (1986): J. Chem. Phys. 843147.MathSciNetADSCrossRefGoogle Scholar
  33. Moser, J. (1962): Nachr. Akad. Wiss. Gottingen II, Math. Phys. Kd 11.Google Scholar
  34. Moser, J. (1970): Comm. Pure Appl. Math 23609.MathSciNetADSMATHCrossRefGoogle Scholar
  35. Moser, J. (1973): Stable and Random Motions in Dynamical Systems(Princeton University Press, Princeton, N.J.)MATHGoogle Scholar
  36. Moser, J. (1979): Amer. Sci. (USA) 67689.ADSGoogle Scholar
  37. Noether, E. (1918): Nachrichten Gesell. Wissenschaft. Gottingen 2235.Google Scholar
  38. Ornstein, D.S. (1974): Ergodic Theory, Randomness, and Dynamical Systems(Yale University Press, New Haven)MATHGoogle Scholar
  39. Oseledec, V.I. (1968): Trans. Mose. Math. Soc. 19197.MathSciNetGoogle Scholar
  40. Penrose, O. (1970): Foundations of Statistical Mechanics(Pergamon Press, Oxford).MATHGoogle Scholar
  41. Piesin, Ya.G. (1976): Math. Dokl. 17196.Google Scholar
  42. Ramani, A., Grammaticos, B., and Bountis, T. (1989): Phys. Repts. 180159.MathSciNetADSCrossRefGoogle Scholar
  43. Reichl, L.E. (1980): A Modern Course in Statistical Physics(University of Texas Press, Austin; Edward Arnold Pub., London; Maruzen Co. Ltd., Tokyo; Peking University Press, Beijing).Google Scholar
  44. Reichl, L.E. and Zheng, W.M. (1984a): Phys. Rev. A292186.ADSCrossRefGoogle Scholar
  45. Reichl, L.E. and Zheng, W.M. (1984b): Phys. Rev. A301068.ADSCrossRefGoogle Scholar
  46. Reichl, L.E. and Zheng, W.M. (1988): in Directions in Chaosedited by Hao Bailin (World Scientific Pub.Co., Singapore)Google Scholar
  47. Sinai, Ya.G. (1963a): Amer. Math. Soc. Transl. 3162.MATHGoogle Scholar
  48. Sinai, Ya.G. (1963b): Sov. Math. Dokl. 41818.MathSciNetGoogle Scholar
  49. Toda, M. (1967): J. Phys. Soc. (Japan) 22431; 23501.ADSCrossRefGoogle Scholar
  50. Toda, M. (1981): Theory of Nonlinear Lattices(Springer-Verlag, Berlin)MATHCrossRefGoogle Scholar
  51. Walker, G.H. and Ford, J. (1969): Phys. Rev.188416.MathSciNetADSCrossRefGoogle Scholar
  52. Wintner, A. (1947): The Analytical Foundations of Celestial Mechanics(Princeton University Press, Princeton, New Jersey)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • L. E. Reichl
    • 1
  1. 1.Center for Statistical Mechanics and Complex Systems, Department of PhysicsUniversity of Texas at AustinAustinUSA

Personalised recommendations