Global Properties

  • Linda E. Reichl
Part of the Institute for Nonlinear Science book series (INLS)


The area-preserving maps of Chapter 3 have given us a clear picture of the complex behavior in conservative systems as they undergo a transition to chaos. These maps, however, are somewhat special. For example, the whisker map describes the stochastic layer in the separatrix region of the Duffing oscillator, the standard map describes a small neighborhood of the stochastic layer, and the quadratic maps describe the neighborhood of isolated islands. In practice, we are often confronted with a physical system whose Hamiltonian we are given, and then we must determine as much as possible about its global dynamics. We have to ask: What regions of the phase space might undergo a to transition chaos and for what parameter values does it happen? For such systems, it is usually not possible to construct an area-preserving map analytically, but there is still a great deal we can learn about the global behavior by working directly with the Hamiltonian.


Phase Space Global Property Stable Manifold Primary Resonance Nonlinear Resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnol’d V.I. (1964): Sov. Math. Dokl. 5 581 (Reprinted in [MacKay and Meiss 1987]).MATHGoogle Scholar
  2. Byrd, P.F. and Friedman, D. (1971): Handbook of Elliptic Integrals for Engineers and Scientists (Springer-Verlag, Berlin, 1971).MATHCrossRefGoogle Scholar
  3. Chernikov, A.A., Natenzon, M.Ya., Petrovichev, B.A., Sagdeev, R.Z., and Zaslavsky, G.M. (1988): Phys. Lett. A 129 377.MathSciNetADSCrossRefGoogle Scholar
  4. Chernikov, A.A., Sagdeev, R.Z., Usikov, D.A., and Zaslavsky, G.M. (1989): Comput. Math. Appl. 17 17.MathSciNetMATHCrossRefGoogle Scholar
  5. Chirikov, B. (1979): Phys. Rep. 52 263.MathSciNetADSCrossRefGoogle Scholar
  6. Chirikov, B., Ford, J., and Vivaldi, F. (1979): Nonlinear Dynamics and the Beam-Beam Interaction, edited by M. Month and J.C. Herrera, AIP Conference Proceedings 57 (American Institute of Physics, New York).Google Scholar
  7. Contopoulos, G. and Vlahos, L. (1975): J. Math. Phys. 16 1469.ADSCrossRefGoogle Scholar
  8. Dermott, S.F. and Murray, CD. (1983): Nature 301 201.ADSCrossRefGoogle Scholar
  9. Dragt, A.J. and Finn, J.M. (1976): J. Geophys. Res. 81 2327.ADSCrossRefGoogle Scholar
  10. Eckhardt, B. (1987): J. Phys. A: Math. Gen. 20 5971.MathSciNetADSCrossRefGoogle Scholar
  11. Eckhardt, B. (1988): Physica D 33 89.MathSciNetADSMATHCrossRefGoogle Scholar
  12. Escande, D.F. (1982): Phys. Scr. T2/1 126.Google Scholar
  13. Escande, D.F. (1985): Phys. Rep. 121 165.MathSciNetADSCrossRefGoogle Scholar
  14. Escande, D.F. and Doveil, F. (1981): J. Stat. Phys. 26 257.MathSciNetADSCrossRefGoogle Scholar
  15. Gaspard, P. and Rice, S.A. (1989): J. Chem. Phys. 90 2225.MathSciNetADSCrossRefGoogle Scholar
  16. Gerasimov, A., Izrailev, F.M., Tennyson, J.L., and Temnyykh, A.B. (1986): Springer Lecture Notes in Physics 247 (Springer-Verlag, Berlin), p. 154 (Reprinted in [MacKay and Meiss 1987]).CrossRefGoogle Scholar
  17. Hatori, T. and Irie, H. (1987): Prog. Theor. Phys. (Jpn) 78 249.MathSciNetADSCrossRefGoogle Scholar
  18. Jensen, R.V. (1984): Phys. Rev. A 30 386.ADSCrossRefGoogle Scholar
  19. Jensen, R.V. (1987): Phys. Scr. 35 668.ADSCrossRefGoogle Scholar
  20. Jung, C. and Richter, RH. (1990): J. Phys. A: Math. Gen. 23 2847.MathSciNetADSMATHCrossRefGoogle Scholar
  21. Jung, C. and Scholz, H.-J. (1988): J. Phys. A: Math. Gen. 21 2301.MathSciNetADSMATHCrossRefGoogle Scholar
  22. Jung, C. and Seligman, T.H. (1997): Phys. Rep. 285 77.MathSciNetADSCrossRefGoogle Scholar
  23. Jung, C., Tel, T., and Ziemniak, E. (1993): Chaos 3 555.ADSCrossRefGoogle Scholar
  24. Kaneko, K. and Bagley, R.J. (1985): Phys. Lett. A 110 435.MathSciNetADSCrossRefGoogle Scholar
  25. Kirkwood, D. (1867): Meteoric Astronomy (Lippincott, Philadelphia).Google Scholar
  26. Klafter, J. and Zumofen, G. (1994): Phys. Rev. E 49 4873.ADSCrossRefGoogle Scholar
  27. Landau, L.D. and Lifshitz, E.M. (1976): Mechanics (Pergamon Press, Oxford).Google Scholar
  28. Laskar, J. (1989): Nature 338 237.ADSCrossRefGoogle Scholar
  29. Laskar, J. (1996): Celestial Mech. Dyn. Astron. 64 115.MathSciNetADSMATHCrossRefGoogle Scholar
  30. Lichtenberg, A.J. and Lieberman, M.A. (1983): Regular and Stochastic Motion (Springer-Verlag, New York).MATHCrossRefGoogle Scholar
  31. Lin, W.A. and Reichl, L.E. (1985): Phys. Rev. A 31 1136.ADSCrossRefGoogle Scholar
  32. Lin, W.A. and Reichl, L.E. (1986): Physica D 19 145.MathSciNetADSMATHCrossRefGoogle Scholar
  33. MacKay, R.S. and Meiss, J.D. (1987): Hamiltonian Dynamical Systems (Adam Hilger, Bristol).MATHGoogle Scholar
  34. Moser, J. (1978): Math. Intelligencer 1 65.MathSciNetADSCrossRefGoogle Scholar
  35. Murray, CD. (1986): Icarus 65 70.ADSCrossRefGoogle Scholar
  36. Okon, E., Parker, W., Chism, W., and Reichl, L.E. (2002): Phys. Rev. A 66 53406.ADSCrossRefGoogle Scholar
  37. Petit, J.M. and Henon, M. (1986): Icarus 66 536.ADSCrossRefGoogle Scholar
  38. Petrosky, T. and Hasegawa, H. (1989): Physica A 160 351.MathSciNetADSCrossRefGoogle Scholar
  39. Petrosky, T. and Prigogine, I. (1990): Can. J. Phys. 68 670.MathSciNetADSMATHCrossRefGoogle Scholar
  40. Petrosky, T., Prigogine, I., and Tasaki, S., (1991): Physica A 173 175.MathSciNetADSCrossRefGoogle Scholar
  41. Reichl, L.E. and Zheng, W.M. (1984a): Phys. Rev. A 29 2186.ADSCrossRefGoogle Scholar
  42. Reichl, L.E. and Zheng, W.M. (1984b): Phys. Rev. A 30 1068.ADSCrossRefGoogle Scholar
  43. Rückerl, B. and Jung, C. (1994): J. Phys. A: Math. Gen. 27 6741.ADSMATHCrossRefGoogle Scholar
  44. Smilansky, U. (1992): Chaos and Quantum Physics (Proceedings of the 1989 Les Houches Summer School), edited by M.J. Giannoni, A. Voros, and J. Zinn-Justin (North-Holland, Amsterdam), p. 371.Google Scholar
  45. Stömer, C. (1907): Arch. Sci. Phys. Nat. 24 350Google Scholar
  46. Sussman, G.J. and Wisdom, J. (1988): Science 241 433.ADSCrossRefGoogle Scholar
  47. Tennyson, J.L. (1983): “Resonance Streaming in Electron-Positron Colliding Beam Systems”: Long Time Prediction in Dynamics, edited by W. Horton, L.E. Reichl, and V. Szebehely (John Wiley and Sons, New York), p. 427.Google Scholar
  48. Troll, G. and Smilansky, U. (1989): Physica D 35 34.MathSciNetADSMATHCrossRefGoogle Scholar
  49. Watson, G.N. (1944): A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, U.K.).MATHGoogle Scholar
  50. Wisdom, J. (1985): Icarus 63 272.ADSCrossRefGoogle Scholar
  51. Zaslavsky, G.M. (1998): Physics of Chaos in Hamiltonian Systems (Imperial College Press, London).MATHGoogle Scholar
  52. Zaslavsky, G.M., Edelman, M., and Niyazov, B.A. (1997): Chaos 7 159.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Linda E. Reichl
    • 1
  1. 1.Department of Physics and Center for Statistical Mechanics and Complex SystemsUniversity of Texas at AustinAustinUSA

Personalised recommendations