Advertisement

Fast Outer Hair Cell Motility: How Fast is Fast?

  • J. Santos-Sacchi
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 87)

Abstract

Recent experiments have implicated transmembrane voltage as the driving force of OHC motility (Santos-Sacchi and Dilger, 1988a,b; Iwasa and Kachar, 1989). A voltage dependence of OHC motility clearly implies that a charged voltage sensing particle must reside in the OHC membrane, and as was predicted for voltage dependent ionic channels (Hodgkin and Huxley, 1952), particle movement should occur under an applied transmembrane voltage. Gating currents associated with the movement of the presumed voltage sensor in OHCs have been described by Ashmore (1989).

Keywords

Outer Hair Cell Voltage Clamp Otoacoustic Emission Charge Movement Transmembrane Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashmore, J .F. (1989) Transducer motor coupling in cochlear outer hair cells. In: Mechanics of Hearing (Eds: Kemp, D. and Wilson, J.P.) Plenum Press, New York, pp. 107–113.Google Scholar
  2. Ashmore, J.F. (1987) A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J. Physio!. (Lond.), 388, 323–347.Google Scholar
  3. Ashmore, J.F. and Holley, M.E. (1988) Temperature-dependence of a fast motile response in isolated outer hair cells of the guinea-pIg cochlea. Quart. J. Exper. Physio!., 73,143–145.Google Scholar
  4. Bezanilla, F. and Taylor, R. (1978) Temperature effects on gating currents in the squid giant axon. Biophys. J., 23, 479484.Google Scholar
  5. Brownel, W.E. (1990) Outer hair cell electromotility and otoacousticemissions. Ear and Hearing, 11, 82–92Google Scholar
  6. Brownell, W.E., Imredy, J.B. and Shehata, W. (1989) stimulated volume changes in mammalian outer hair cells. Proc. Ann. Int. Cong. IEEE-Eng. Med. Bio!. Soc., 11, 1344–1345.Google Scholar
  7. Brownell, W.E., Sbehata, W. and lmredy, J.B. (1989) Slow electrically and chemically evoked volume changes in guinea pig outer haIr cells. In: Biomechanics of Active Movement and Deformation of Cells (Ed: Akas, N.) Springer-Verlag, New York, pp. 493–498.Google Scholar
  8. Collins, C.A and Rojas, E. (1982) Temperature dependence of the sodium channel gating kinetics in the node of RanVler. Quart. J. Exper. Physio!., 67, 41–55.Google Scholar
  9. Dallos, P., Santos-Sacchi, J. and Flock, A (1982) Intracellular recordings from outer hair cells. Science, 218, 582–584.Google Scholar
  10. Hodgkin, A.L. and Huxley, A.F. (1952) A quantitative descriftion of membrane current and its apphcation to conduction and eXCItation in nerve. 1. Physio!., 17,500–544.Google Scholar
  11. Hubbard, A.E. and Mountain, D.C. (1990) Haircell forward and reverse transduction: Differential suppression and enhancement. flear. Res. 43,269–272.Google Scholar
  12. lwasa, K.H. and Kachar, B. (1989) Fast in vitro movement of outer hair cells in an external electric field: effect of digitonin, a membrane permeabilizing agent. Hear. Res., 40, 247–254.Google Scholar
  13. Marty, A. and Neher, E. (1983) Tight-seal whole-cell recording. In: Singlecbannel recording (Eds: Sakmann, B. and Neher, E.) Plenum Press, New York, pp. 107–122.Google Scholar
  14. Santos-Sacchi, J ., (1990) Reversible inhibition of voltage-dependent outer hair cell motility: effects of gadohmum Ions and cytosohc volume alterations. In preparatton.Google Scholar
  15. Santos-Sacchi, J. (1989a) Gadolinium ions reversibly block voltage dependent movements of isolated outer hair cells. 19th Annual Meeting, Soc. for Neurosci., Phoenix, AZ, October.Google Scholar
  16. Santos-Sacchi, J. (1989b) Asymmetry in voltage dependent movements of isolated outer hair cells from the organ of Corti. J. Neurosci., 9, 2954–2962.Google Scholar
  17. Santos-Sacchi, J. and Dilger, J.P. (1988a) Whole cell currents and mechanical responses in outer hair cells. Midwinter Meeting, Assoc. for Res. in Otolaryngo!., Clearwater, FL, February.Google Scholar
  18. Santos-Sacchi, J. and Dilger, J.P. (1988b) Whole cell currents and mechanical responses of isolated outer hair cells. Hear. Res., 35, 14j–150.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. Santos-Sacchi
    • 1
  1. 1.Laboratory of OtolaryngologyNew Jersey Medical SchoolNewarkUSA

Personalised recommendations