Nonlinear Transmission Line Model Can Predict the Statistical Properties of Spontaneous Otoacoustic Emissions

  • Miriam Furst
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 87)


Cochlear transmission line models were first introduced in order to account for von Bekesy’s observations (von Bekesy, 1960) regarding the basilar membrane traveling wave properties (Zwislocky, 1950; Peterson and Bogert 1950). Those pioneer models assumed that the cochlear mechanics is linear as those were the experimental results at that time.


Acoustic Emission Outer Hair Cell Basilar Membrane Limit Cycle Oscillation Transmission Line Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bialek, W., and Wit, H.P. (1984). Quantum limits to oscillator stability: Theory and experiments on acoustic emissions from the human ear, Physics Letters I04A, 173–178.Google Scholar
  2. Furst, M. (1989). Reply to ’Comment on: A cochlear model for acoustic emissions’ J. Acoust. Soc. Am. 85, 2217 (1989), J. Acoust. Soc. Am. 85, 2218–2220.Google Scholar
  3. Furst, M. and Lapid, M. (1988). A cochlear model for acoustic emissions, 1 Aeoust. Soc. Am., 84, 222–229.Google Scholar
  4. Furst, M. and J.L.Goldstein (1982). A cochlear nonlinear transmission–line model compatible with combination tone psychophysics, J. Acoust. Soc. Am. 72, 717–726.Google Scholar
  5. Goldstein, J.L. (1967). Auditory nonlinearity, J. Aeoust. Soc. Am. 41, 676–689.Google Scholar
  6. Goldstein, J.L., Buchsbaom, G., and Furst M. (1978). Compatibility between psychoacoustical and physiological measurements of aural combination tones, J. Acoust. Soc. Am. 63, 474–485.Google Scholar
  7. Hall, J.L. (1974). Two tone distortion products in a nonlinear model of the basilar membrane, J. Acoust. Soc. Am. 56, 1818–1828.Google Scholar
  8. Hubbard, A. E. and Geisler, C. D. (1972). A hybrid computer model of the cochlear partition, 1 Acoust. Soc. Am., 51, 1895–1903.Google Scholar
  9. Kemp, D.T. (1978). Stimulated acoustic emissions from within the human auditory system, 1 Aeoust. Soc. Am. 64, 1386–1391.Google Scholar
  10. Kim, D.,., Molnar, C.E., and Pfeiffer, R.R. (1973). A system of nonlinear differential equations modeling basilar membrane motion J. Acoust. Soc. Am. 54, 1517–1529.Google Scholar
  11. Long, G.R., Tubis, A., Jones. K.L., and Sivaramakrishnan, S. (1988). Modification of the external tone synchronization and statistical properties of spontaneous otoacoustic emissions by aspirin consumption, in Basic Issues in Hearing, edited by H. Duifuis, J.W. Horst and H.P. Wit (Acdemic Press, London), pp. 93–100.Google Scholar
  12. Neely, S.T., and Kim, D.,. (1986). A model for active elements in cochlear biomechanics, J. Acous!. Soc. Am. 79, 1472–1480.Google Scholar
  13. Nilsson, H. G. and Moller, A.R. (1977). Linear and nonlinear models of the basilar membrane motion, BioI. Cyber. 27, 107–112.Google Scholar
  14. Peterson, L. and Bogert, B. (1950). A dynamical theory of the cochlea, 1 Acoust. Soc. Am. 22, 369–381.Google Scholar
  15. Rhode, W.S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique, J. Acoust. Soc. Am. 49. 1218–1231.Google Scholar
  16. Talmadge, C., Tubis, A., and Long, G.R. (1989). Some implications of nonlinear passive models of spontaneous otoacoustic emissions, J. Acoust. Soc. Am. 86, S44–S45.Google Scholar
  17. Widin, G.P. and Rabinowitz, W.M. (1984). Interaction of spontaneous oto–acoustic emissions and external sounds, J. Acoust. Soc. Am. 76, 1713–1720.Google Scholar
  18. Wit, H.P. (1986). Statistical properties of strong spontaneous emission, in Peripheral Auditory Mechanics, edited by J.B. Allen, lL. Hall, A.E. Hubbard, S.T. Neely, and A. Tubis (Springer Verlag, Berlin), pp. 221–228.Google Scholar
  19. Wit, H.P. (1989). Comment on ’A cochlear model for acoustic emissions’ J. Acoust. Soc. Am. 84,222–229 (1988)]. J. Acoust. Soc. Am. 85,2217.Google Scholar
  20. Zurek, P.M. (1985). Acoustic emissions from the ear: A summary of results from humans and animals, J. Acous!. Soc. Am. 78, 340–344.Google Scholar
  21. Zurek, P.M. (1981). Spontaneous narrowband acoustic signals emitted by human ears, J. Aeous!. Soc. Am. 69, 514–523.Google Scholar
  22. Zwicker, E. (1986). Otoacoustic emissions in a nonlinear cochlear hardware model with feedback, J. Acoust. Soc. Am. 80, 154–162.Google Scholar
  23. Zwislocki, J.J. (1950). Theory of the acoustical action of the cochlea, J. Acoust. Soc. Am. 22, 778–784.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Miriam Furst
    • 1
  1. 1.Department of Electronic Systems, Faculty of EngineeringTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations