The Fractal Doubly Stochastic Poisson Point Process as a Model for the Cochlear Neural Spike Train

  • Malvin C. Teich
  • Robert G. Turcott
  • Steven B. Lowen
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 87)

Abstract

It has been shown that the neural spike trains transmitted along primary fibers in the cochlear nerve can be described by a dead-time-modified fractal point process (Teich, 1989). These spike trains manifest highly irregular firing rates, irregularly shaped pulse-number distributions (even when the number of samples is large), and fractional power-law behavior in the Fano-factor tIme curve with a fractional power-law exponent that appears to depend on the level of stimulation (Teich and Khanna, 1985; Teich and Turcott, 1988; Teich, Johnson Kumar and Turcott, 1990).

Keywords

Acoustics Corti Dallos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, D.R. (1962) Renewal Theory. Methuen, London.Google Scholar
  2. Feller, W. (1951) The asymptotic distribution of the range of sums or independent random variables. Ann. Math. Stat. 22, 427–432.Google Scholar
  3. Hurst, H.E. (195 1) Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng. 116,770–808.Google Scholar
  4. Lowen. S.B. and Teich, M.C. (1989) Generalised fshot noise. Electron. LeLl. 25, 1072–1074.Google Scholar
  5. Lowen, S.B. and Teich, M.C. (1991) Fractal shot-noise driven doubly stochastic Poisson point process. Submitted for publication.Google Scholar
  6. Mandelbrot, B.B. (1965) Self similar error clusters in communication systems and the concept or conditional stationarity. IEEE Trans. Commun. Tech. 13,71–90.Google Scholar
  7. Mandelbrot, B.B. (1983)The Fractal Geometry of Nature. Freema. New York. Prucnal, P.R. and Teich, M.C. (1983) Refractory effects in neural counting processes with exponentially decaying rates. IEEE Trans. SYSl. Man Cybern. SMC–13, 1028–1033.Google Scholar
  8. Teich. M.C. (1985) Normalizing transformations for dead-lime-modified Poisson counting distributions. Biol. Cybern. 53, 121–124.Google Scholar
  9. Teich, M.C. (1989) Fractal character of the auditory neural spike train. IEEE Trans. Biomed. Eng. 3S, ISO-ISO.Google Scholar
  10. Teich, M .C. and Oiament, P. (1980) Relative refractoriness in visual information processing. BioI. Cybern.38,187–191.Google Scholar
  11. Teich, M .C. and Khanna, S.M. (1985) Pulse-number distribution for the neural spike train in the cat’s auditory nerve. J . Acoust. Soc. Am. 77,1110–1128.Google Scholar
  12. Teich, M.C. and Turcott, R.C. (988) Multinomial pulse-number distributions for neural spikes in primary auditory fibers: Theory. Biol. Cybern. 59, 91–102.Google Scholar
  13. Teich M.C., Khanna, S.M. ,and Keilson, S.E. (1989) Nonlinear dynamics of cellular vibrations in the organ ofCorLi. Acta Otolaryngologica Suppl. 467,265–279.Google Scholar
  14. Teich, M.C., Johnson, 0.11., Kumar, A.R., and Turcott, R.C.1 1990) Rate fluctuations and fractional power-law noise recorded from cells in the lower auditory pathway of the cat. Hear. Res. 46, 41 –52.Google Scholar
  15. Teich, M.C., Turcott, R.C., and Lowen, S.B. (1990) Identification of the point process characte rizing the auditory neural spike train. Assoc. Res. Otolaryngol. Abst. ISS, 141.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Malvin C. Teich
    • 1
    • 2
  • Robert G. Turcott
    • 1
    • 2
  • Steven B. Lowen
    • 1
    • 2
  1. 1.Department of Electrical EngineeringColumbia UniversityNew YorkUSA
  2. 2.Fowler Memorial LaboratoryColumbia College of Physicians & SurgeonsNew YorkUSA

Personalised recommendations