Skip to main content

Calcium Ions Promote Rapid Mechanically Evoked Movements of Hair Bundles

  • Conference paper
The Mechanics and Biophysics of Hearing

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 87))

Abstract

The mechanoreceptive organelle of a hair cell, the hair bundle, consists primarily of a bevelled array of hexagonally packed stereocilia. When a mechanical stimulus is applied at a bundle’s tip, the individual stereocilia behave as rigid rods that bend at their basal insertions into the cell’s apical surface. The 20 or so actin filaments that form the cytoskeleton in this tapered basal region probably contribute much of the bundle’s steadystate stiffness, which is approximately 1 mN·m−1 for the hair cells of amphibians (Howard and Ashmore, 1986; Howard and Hudspeth, 1987a; Denk el al., 1989), reptiles (Crawford and Fettiplace, 1985), and mammals (Flock and Strelioff, 1984; Russell et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assad, I. A., Hacohen, N., and Corey, D. P. (1989) Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc. Natl. Acad. Sci. USA 86, 2918-2922.

    Google Scholar 

  • Bosher, S. K. and Warren, R.L. (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273, 377 - 378.

    Article  ADS  Google Scholar 

  • Corey, D.P. and Hudspeth, A.J. (1980) Mechanical stimulation and micromanipulation with piezoelectric bimorph elements. I. Neurosci. Meth. 3, 183-202.

    Google Scholar 

  • Corey, D.P. and Hudspeth, A.J. (1983) Kinetics of the receptor current in bullfrog saccular hair cells. I. Neurosci. 3, 962 - 976.

    Google Scholar 

  • Crawford, A. C. and Fettiplace, R. (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. I. Physio!. 364, 359 - 379.

    Google Scholar 

  • Crawford, A. C., Evans, M. G., and Fettiplace, R. (1989) Activation and adaptation of transducer currents in turtle hair cells. I. Physio!. 419, 405 - 434.

    Google Scholar 

  • Denk, W. and Webb, W. W. (1989) Simultaneous recording of fluctuations of hair-bundle deflection and intracellular voltage in saccular hair cells. In: Cochlear Mechanisms: Structure, Function, and Models (Eds. Wilson, J.P. and Kemp, D. T.) Plenum Press, New York, pp. 125 - 132.

    Chapter  Google Scholar 

  • Denk, W., Webb, W. W., and Hudspeth, A.J. (1989) The mechanical properties of frog sacculus hair bundles are reflected in Brownian motion measured with a laser differential interferometer. Proc. Nail. Acad. Sci. U.S.A. 86, 5371-5375.

    Google Scholar 

  • Eatock, R.A., Corey, D.P., and Hudspeth, A.I. (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. I. Neilrosci. 7, 2821 - 2836.

    Google Scholar 

  • Flock, A. and Strelioff, D. (1984) Graded and nonlinear mechanical properties of sensory hairs in the mammalian hearing organ. Nature 310, 597 - 599.

    Article  ADS  Google Scholar 

  • Hacohen, N., Assad, I.A., Smith, W.I., and Corey, D.P. (1989) Regulation of tension on hair-cell transduction channels: displacement and calcium dependence. J. Neurosci. 9, 3988 - 3997.

    Google Scholar 

  • Howard, J. and Ashmore, J. F. (1986) Stiffness of sensory hair bundles in the sacculus of the frog. Hearing Res. 23, 93 - 104.

    Article  Google Scholar 

  • Howard, I. and Hudspeth, A.I. (1987a) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc. Natl. Acad. Sci. U.S.A. 84, 3064-3068.

    Google Scholar 

  • Howard, J. and A.J. Hudspeth (1987b) Adaptation of mechanoelectrical transduction in hair cells. In: Sensory Transduction (Eds. Hudspeth, A. I., MacLeish, P. R., Margolis, F. L., and Wiesel, T. N.) Fondation pour l’Etude du Sysreme Nerveux Central et Peripherique, Geneva, pp. 138 - 145.

    Google Scholar 

  • Howard, J. and Hudspeth, A.J. (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron I, 189 - 199.

    Google Scholar 

  • Howard, I., Roberts, W. M., and Hudspeth, A. J. (1988) Mechanoelectrical transduction by hair cells. Ann. Rev. Biophys. Biophys. Chern. 17, 99-124.

    Google Scholar 

  • Hudspeth, A.J. (1989) How the ear’s works work. Nature 341, 397 - 404.

    Article  ADS  Google Scholar 

  • Hudspeth, A.J. and Corey, D.P. (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Nail. Acad. Sci. U.S.A. 74, 2407–2411.

    Google Scholar 

  • Hudspeth, A. J. and Corey, D. P. (1978) Controlled bending of high-resistance glass microelectrodes. Am. J. Physiol. 234, C56 - C57.

    Google Scholar 

  • Hudspeth, A.J., Roberts, W.M., and Howard, J. (1989) Gating compliance, a reduction in hair-bundle stiffness associated with the gating of transduction channels in hair cells from the bullfrog’s sacculus. In: Cochlear Mechanisms: Structure, Function and Models (Eds. Wilson, J. P. and Kemp, D. T.) Plenum Press, New York, pp. 117 - 123.

    Chapter  Google Scholar 

  • Ikeda, K., Kusakari, J., Takasaka, T., and Saito, Y. (1987) The Ca2+ activity of cochlear endolymph of the guinea pig and the effects of inhibitors. Hearing Res. 26, 117 - 125.

    Article  Google Scholar 

  • Jackson, M. B. (1989) Perfection of a synaptic receptor: kinetics and energetics of the acetylcholine receptor. Proc. Nat!. Acad. Sci. USA 86, 2199-2203.

    Google Scholar 

  • Kroese, A.B.A., Das, A., and Hudspeth, A.J. (1989) Blockage of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hearing Res. 37, 203 - 218.

    Article  Google Scholar 

  • Patuzzi, R. and Robertson, D. (1988) Tuning in the mammalian cochlea. Physiol. Rev. 68, 1009-1082.

    Google Scholar 

  • Roberts, W.M., Howard, J., and Hudspeth, A.I. (1988) Mechanoelectrical transduction, frequency tuning, and synaptic transmission by hair cells. Ann. Rev. Cell BioI. 4, 63-92.

    Google Scholar 

  • Russell, I.J., Richardson, G. P., and Ktlssl, M. (1989) The responses of cochlear hair cells to tonic displacements of the sensory hair bundle. Hearing Res. 43, 55 - 70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaramillo, F., Howard, J., Hudspeth, A.J. (1990). Calcium Ions Promote Rapid Mechanically Evoked Movements of Hair Bundles. In: Dallos, P., Geisler, C.D., Matthews, J.W., Ruggero, M.A., Steele, C.R. (eds) The Mechanics and Biophysics of Hearing. Lecture Notes in Biomathematics, vol 87. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4341-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4341-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97473-6

  • Online ISBN: 978-1-4757-4341-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics